Advertisement

Hydrobiologia

, Volume 54, Issue 3, pp 257–272 | Cite as

Patterns of emergence, import of egg energy and energy export via emerging dragonfly populations in a tropical pond

  • S. Mathavan
  • T. J. Pandian
Article

Abstract

The most abundant dragonflies Brachythemis contaminata, Orthetrum sabina, Diplacodes trivialis, Pantala flavescens and Trithemis festiva in the tropical pond Idumban emerged from November to April during the years 1973,1974 and 1975. The date of initiation of emergence of all the species was synchronized and tied to the events following the north west monsoon in November. During the seasons '73–74 and '74–75, as many as 10,693 and 7,910 adults emerged; females outnumbered the males in all the 5 species; male populations of B. contaminata, O. sabina, D. trivialis, P. flavescens and T. festiva represented 47, 48, 46, 49 and 44% during the '73–74 season, 48, 48, 46, 46 and 49% during the '74–75 season, respectively. The adult dragonflies equivalent to 2,442 Kcal emerged from the Pond during the season '73–74. Of this, B. contaminata contributed 30%, D. trivialis 7%, O. sabina 12%, P. flavescens 23% and T. festiva 28%. For the season '74–75, the dragonflies equivalent to 1,602 Kcal emerged from the Pond and the contribution was in the following order: B. contaminata: 31%, O. sabina: 8%, D. trivialis: 13%, P. flavescens: 27% and T. festiva: 21%. Import of energy due to inoculation of B. contaminata eggs into the Pond Idumban was 73 Kcal/ year and the output from the Pond via emerging B. contaminata population alone amounted to 620 Kcal/ year; the net energy loss from the Pond was 548 Kcal/ year. During either season, as much as 99.7% of B. contaminata eggs failed to attain adulthood due to infertility (5.8%), unhatchability (12%) and predation during the egg and nymphal stages (82.5%). During the study, the GPP of the Pond was 26,073 Kcal/m2/ year, and output of energy through emergence of 5 dragonfly species amounted to 0.0045 Kcal/m2/year, i.e. 0.00002% of the GPP is lost through the emerging carnivorous odonates; comparable values available for the emerging detritivorous chironomids, herbivorous dipterans and mayflies fall between 1.0 and 0.1%.

Keywords

Temporal patterns of emergence sex ratio preference of emergence zone energy import export and balance nymphal mortality fraction of GPP exported 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beesley, C. 1972. Investigations of the life history and predatory capacity of Anax junius Drury (Odonata: Aeschnidae). Ph. D. thesis, University of California, Riverside.Google Scholar
  2. Benke, A. C. & Benke, S. S. 1975. Comparative dynamics and life histories of coexisting dragonfly populations. Ecology 56: 302–317.CrossRefGoogle Scholar
  3. Boehms, C. N. 1971. The influence of temperature upon embryonic diapause and seasonal regulation in Sympetrum vicinum (Hagen) (Odonata: Libellulidae). Ph. D. Thesis, University of North Carolina, Chapel Hill.Google Scholar
  4. Braum, E. 1967. Survival of fish larvae with reference to their feeding behaviour and the food supply. In: The biological basis of freshwater fish production. p. 113–134. (Ed.) Gerking, S. D., Blackwell Scientific Publications, Oxford.Google Scholar
  5. Corbet, P. S. 1951. The emergence and sex ratio of Anax imperator Leach (Odonata: Aechnidae). The Ent. 87: 176–179.Google Scholar
  6. Corbet, P. S. 1957. The life history of the emperor dragonfly Anax imperator Leach (Odonata: Aeschnidae). J. Anim. Ecol. 26: 1–69.CrossRefGoogle Scholar
  7. Corbet, P. S. 1962. A biology of dragonflies. p. 247. Witherby, London.Google Scholar
  8. Corbet, P. S. 1964. Temporal patterns of emergence in aquatic insects. Can. Ent. 96: 264–279.CrossRefGoogle Scholar
  9. Corbet, P. S. & Danks, H. V. 1973. Seasonal emergence and activity of mosquitoes (Diptera: Culcidae) in a high-arctic locality. Can. Ent. 105: 837–872.CrossRefGoogle Scholar
  10. Danks, H. V. & Corbet, P. S. 1973. Sex ratios at emergence of two species of high arctic Aedes (Diptera: Culcidae). Can. Ent. 105: 647–651.CrossRefGoogle Scholar
  11. Danks, H. V. & Oliver, D. R. 1972a. Seasonal emergence of some high arctic chironomidae (Diptera). Can. Ent. 104: 661–686.CrossRefGoogle Scholar
  12. Danks, H. V. & Oliver, D. R. 1972b. Diel periodicities of emergence of some high arctic chironomidae (Diptera). Can. Ent. 104: 903–916.CrossRefGoogle Scholar
  13. Eller, J. G. 1963. Seasonal regulation in Pachydiplax longipennis Burmeister (Odonata: Libelluladae). Ph. D. thesis, University of North Carolina, Chapel Hill.Google Scholar
  14. Hamilton, A. L. 1969. On estimation of annual production. Limnol. Oceanogr. 14: 771–782.CrossRefGoogle Scholar
  15. Haniffa, M. A. 1975. Ecophysiological studies in a chosen gastropod. Ph. D. thesis, Madurai University, Madurai.Google Scholar
  16. Harper, P. P. 1973. Emergence, reproduction, and growth of setipalpian Plecoptera in southern Ontario. Oikos 24: 94–107.CrossRefGoogle Scholar
  17. Harper, P. P. & Pilon, J. G. 1970. Annual patterns of emergence of some Quebec stoneflies (Insecta: Plecoptera). Can. J. Zool. 48: 681–694.CrossRefGoogle Scholar
  18. Ingram, B. R. 1971. The seasonal ecology of two species of damselflies (Odonata: Zygoptera) with special reference to the effects of photoperiod and temperature on nymphal development. Ph. D. thesis, University of North Carolina, Chapel Hill.Google Scholar
  19. Jacobs, M. E. 1955. Studies on territorialism and sexual selection in dragonflies. Ecology 36: 566–585.CrossRefGoogle Scholar
  20. Kiauta, B. 1967. Studies on karyotypic evolution in Odonata. Genetica 38: 430–446.CrossRefGoogle Scholar
  21. Kimerle, R. A. & Anderson, N. H. 1971. Production and bioenergetic role of the midge Glyptotendipes barbipes (Staeger) in a waste stabilization lagoon. Limnol. Oceanogr. 16: 646–659.CrossRefGoogle Scholar
  22. Kumar, A. 1972. The phenology of dragonflies in the Dehra Dun Valley, India. Odonatologica 1: 199–207.Google Scholar
  23. Kumar, A. 1973. Description of the last instar larvae of Odonata from the Dehra Dun Valley (India) with notes on biology. II Sub Order: Anisoptera. Oriental insect 7: 291–331.CrossRefGoogle Scholar
  24. Lawton, J. H. 1969. Studies on the ecological energetics of damselfly larvae (Odonata: Zygoptera). Ph. D. thesis, University of Durham, Durham.Google Scholar
  25. Lawton, J. H. 1970. A population study on larvae of the damselfly Pyrrhosoma nymphula (Sulzer) (Odonata: Zygoptera). Hydrobiologia 36: 33–52.CrossRefGoogle Scholar
  26. Lawton, J. H. 1972. Sex ratio in Odonata larvae with particular reference to Zygoptera. Odonatologica 1: 209–219.Google Scholar
  27. Lindeman, R. L. 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–418.CrossRefGoogle Scholar
  28. Lutz, P. E. 1962. Studies on aspects of the ecology and physiology of Tetragoneuria cynosura (Say) as related to seasonal regulation (Odonata: Cordulinae). Ph. D. thesis, University of North Carolina, Chapel Hill.Google Scholar
  29. Lutz, P. E. & McMahan, E. A. 1973. Five year patterns of emergence in Tetragoneuria cynosura and Gomphus exilis (Odonata). Ann. Ent. Soc. Am. 66: 1343–1348.CrossRefGoogle Scholar
  30. Lutz, P. E. & Pittman, A. R. 1970. Some ecological factors influencing a community of adult Odonata. Ecology 2: 279–284.Google Scholar
  31. Macan, T. T. 1964. The odonate of Moorland fish pond. Int. Rev. ges. Hydrobiol. Hydrogr. 49: 325–360.CrossRefGoogle Scholar
  32. Macan, T. T. 1966. The influence of predation on the fauna of a Moorland fish pond. Arch. Hydrobiol. 61: 432–452.Google Scholar
  33. Mathavan, S. 1975. Ecophysiological studies in chosen insects (Odonata: Anisoptera). Ph. D. thesis, Madurai University, Madurai.Google Scholar
  34. Moore, N. W. 1953. Population density in adult dragonflies (Odonata: Anisoptera). J. Anim. Ecol. 22: 344–359.CrossRefGoogle Scholar
  35. Needham, J. G. & Betten, C. 1901. Aquatic insects of Adirondacks. Bull. N.Y. St. Mus. 47: 383–612.Google Scholar
  36. Nikolsky, C. V. 1963. The ecology of fishes, p. 352, Academic Press, London.Google Scholar
  37. Oliver, D. R. & Danks, H. V. 1972. Sex ratios of some high arctic chironomidae (Diptera). Can. Ent. 104: 1413–1417.CrossRefGoogle Scholar
  38. Pajunen, V. I. 1962. A description of aggressive behaviour between males of Leucorrhina dubia v. d. Lind. (Odonata: Libellulidae). Ann. Entomol. Fencia. 28: 108–118.Google Scholar
  39. Speir, J. A. & Anderson, N. H. 1974. Use of emergence data for estmating annual production of aquatic insects. Limnol. Oceanogr. 19: 154–156.CrossRefGoogle Scholar
  40. Stockner, G. G. 1971. Ecological energetics and natural history of Hedriodiscus truquii (Diptera) in two thermal spring communities. J. Fish. Res. Bd. Can. 28: 73–94.CrossRefGoogle Scholar
  41. Teal, J. M. 1957. Community metabolism in a temperate cold spring. Ecol. Monogr. 27: 283–302.CrossRefGoogle Scholar
  42. Trottier, R. 1966. The emergence and sex ratio of Anax junius Drury (Odonata: Aeshnidae) in Canada. Can. Ent. 98: 794–798.CrossRefGoogle Scholar
  43. Welch, H. E. 1967. Energy flow through the major microscopic components of an aquatic ecosystem. Ph. D. thesis, University of Georgia, Athens.Google Scholar
  44. Welch, H. E. 1968. Use of modified diurnal curves for the measurement of metabolism in standing water. Limnol. Oceangr. 13: 679–687.CrossRefGoogle Scholar
  45. Welch, H. E. 1973. Emergence of Chironomidae (Diptera) from Char Lake, Resolute, Northwest territories. Can. J. Zool. 51: 1113–1123.CrossRefGoogle Scholar

Copyright information

© Dr. W. Junk b.v. Publishers 1977

Authors and Affiliations

  • S. Mathavan
    • 1
  • T. J. Pandian
    • 1
  1. 1.Zoology DepartmentMadurai University P.G. Centre, Arulmigu Palaniandavar Arts CollegePALNIIndia

Personalised recommendations