, Volume 318, Issue 1–3, pp 61–67 | Cite as

On the relationship between vertical microdistribution and adaptations to oxygen stress in littoral Chironomidae (Diptera)

  • Luc Int Panis
  • Boudewijn Goddeeris
  • Rudolf Verheyen


Animals that dwell at different depths in the sediment, are adapted to different respiratory environments. It is possible that animals that occur deep in the sediment have a higher hemoglobin concentration than surface-dwelling animals. To test this hypothesis, hemoglobin concentrations and weights of eight chironomid species that dwell in the littoral zone were measured. High hemoglobin concentration and weight both seemed to contribute to an ability to cope with low oxygen concentrations, and determined the vertical distribution of chironomids in the sediment. A multiple regression equation, including these factors, was derived. It may be used to predict the median depth of occurrence for species that were not included in this study. High sensitivity of small animals to oxygen stress is discussed from a theoretical point of view.

Key words

Chironomidae body size hemoglobin oxygen respiration benthos spatial distribution vertical distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brundin, L., 1951. The relation of O2-microstratification at the mud surface to the ecology of the profundal bottom fauna. Rep. Freshwat. Res. Drottningholm 32: 32–43.Google Scholar
  2. Cranston, P., 1988. Allergens of non-biting midges (Diptera: Chironomidae): a systematic survey of chironomid haemoglobins. Medical and Veterinary Entomology 2: 117–127.Google Scholar
  3. Czeczuga, B., 1960. Haemoglobin content of the larvae of Tendipes f.l. plumosus L. from various levels of bed sediment. Nature 186: 484.Google Scholar
  4. Frenzel, P., 1990. The influence of chironomid larvae on sediment oxygen microprofiles. Arch. Hydrobiol. 119: 427–437.Google Scholar
  5. Heinis, F., J-P Sweerts & E. Loopik, 1994. Micro-environment of chironomid larvae in the littoral and profundal zones of Lake Maarsseveen I, The Netherlands. Arch. Hydrobiol. 130: 53–67.Google Scholar
  6. Int Panis, L., B. Goddeeris & R. Verheyen, 1994a. On the relationship between the oxygen microstratification in a pond and the spatial distribution of the benthic chironomid fauna. In P. Cranston (ed), The Chironomidae — from genes to ecosystems, Proceedings of the 12th International Symposium on Chironomidae, Canberra. C.S.I.R.O. Publication, Melbourne: 323–328.Google Scholar
  7. Int Panis, L., B. Goddeeris & R. Verheyen, 1994b. The hemoglobin concentration of Chironomus cf. plumosus L. (Diptera: Chironomidae) larvae from two lentic habitats. Netherlands Journal of Aquatic Ecology (in press).Google Scholar
  8. Kajak, Z. & K. Dusoge, 1971. The regularities of vertical distribution of benthos in bottom sediments of three Masurian lakes. Ekologia Polska 19: 485–499.Google Scholar
  9. Moller Pillot, H., 1984. De larven der Nederlandse Chironomidae (Diptera) Deel 1A. Nederlandse Faunistische Mededelingen (ed. European Invertebrate Survey Nederland), 277 pp.Google Scholar
  10. Olafsson, J., 1993. Vertical microdistribution of benthic chironomid larvae within a section of the littoral zone of a lake. Netherlands Journal of Aquatic Ecology 26: 397–403.Google Scholar
  11. Schumacher, A., 1963. Quantitative Aspekte der Beziehung zwischen Stärke der Tubificidenbesiedlung und Schichtdicke der Oxydationszone in den Süßwasserwatten der Unterelbe. Arch. Fishereiwiss. 14: 48–50.Google Scholar
  12. Shiozawa, D. & J. Barnes, 1977. The microdistribution and population trends of larval Tanypus stellatus Coquillett and Chironomus frommeri Atchley and Martin (Diptera: Chironomidae) in Utah Lake: Utah. Ecology 58: 610–618.Google Scholar
  13. Tentori, L. & A. Salvati, 1981. Hemoglobinometry in Human Blood. In E. Antonini, L. Rossi-Bernardi & E. Chiancone (eds), Methods in Enzymology, Hemoglobins. Academic Press 76: 707–715.Google Scholar
  14. Tichy, H., 1979. The haemoglobin synthesising tissue of Chironomus. In D. Murray (ed.), Chironomidae; Ecology, Systematics, Cytology and Physiology, Proceedings of the 7th International Symposium on Chironomidae, Dublin, Pergamon Press: 43–50.Google Scholar
  15. van de Bund, W. & D. Groenendijk, 1994. Seasonal dynamics and burrowing of littoral chironomid larvae in relation to competition and predation. Arch. Hydrobiol. (in press).Google Scholar
  16. Van Kampen, E. & W. Zijlstra, 1961. Standardization of hemoglobinometry II. The hemoglobincyanide method. Clinica chimica acta 6: 538–544.Google Scholar
  17. Wiley, M., 1978. The biology of some Michigan trout stream chironomids (Diptera: Chironomidae). The Michigan Academician 11: 193–209.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Luc Int Panis
    • 1
  • Boudewijn Goddeeris
    • 2
  • Rudolf Verheyen
    • 1
  1. 1.Department of BiologyUniversity of AntwerpAntwerpBelgium
  2. 2.Freshwater BiologyBrusselsBelgium

Personalised recommendations