Hydrobiologia

, Volume 190, Issue 2, pp 127–135 | Cite as

Seasonality of planktonic ciliated protozoa in 20 subtropical Florida lakes of varying trophic state

  • John R. Beaver
  • Thomas L. Crisman
Article

Abstract

The planktonic ciliate populations of 20 Florida lakes ranging from oligotrophic to hypereutrophic were examined monthly for one year. Oligotrophic lakes displayed abundance peaks during fall mixis and biomass peaks in late winter and fall. Mesotrophic systems exhibited a spring-fall bimodality in ciliate abundance with a biomass maxima occurring during fall. Eutrophic/hypereutrophic lakes had pronounced abundance and biomass maxima during summer, with the large ciliates Plagiopyla nasuta and Paramecium trichium often contributing heavily to the midsummer biomass peak. Members of the Oligotrichida numerically dominated abundance and biomass peaks in oligotrophic lakes while the Scuticociliatida dominated the communities of higher trophic states. Total ciliate abundance and biomass were strongly correlated with chlorophyll a concentrations as were various ciliate taxonomic groups. The relationship between ciliate seasonal distribution in these subtropical lakes with lake thermal regimes and trophic state is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archbold, J. H. G. & J. Berger, 1985. A qualitative assessment of some metazoan predators of Halteria gradinella, a common freshwater ciliate. Hydrobiologia 126: 97–102.CrossRefGoogle Scholar
  2. Bays, J. S. & T. L. Crisman, 1983. Zooplankton and trophic state relationships in Florida lakes. Can. J. Fish. Aquat. Sci. 40: 1813–1819.CrossRefGoogle Scholar
  3. Beaver, J. R., T. L. Crisman & J. S. Bays, 1989. Zooplankton seasonality in subtropical Florida lakes. Manuscript submitted.Google Scholar
  4. Beaver, J. R. & T. L. Crisman, 1989. Analysis of the community structure of ciliated protozoa relative to trophic state in Florida lakes. Hydrobiologia: 174: 177–184.CrossRefGoogle Scholar
  5. Beaver, J. R. & T. L. Crisman, 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnol. Oceanogr. 27:246–253.CrossRefGoogle Scholar
  6. Beaver, J. R., & T. L. Crisman & J. S. Bays, 1981. Thermal regimes of Florida lakes. Hydrobiologia 83: 267–273.CrossRefGoogle Scholar
  7. Buechler, D. G. & R. D. Dillon, 1965. Phosphorus regeneration in freshwater paramecia. J. Protozool. 21: 339–343.CrossRefGoogle Scholar
  8. Carlson, R. E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22: 361–369.CrossRefGoogle Scholar
  9. Crisman, T. L., J. R. Beaver & A. E. Keller, 1990. Bacterioplankton abundance in subtropical lakes relative to trophic state and humic color: comparison with temperate systems. Freshwat. Biol.: in press.Google Scholar
  10. Fenchel, T., 1980a. Suspension feeding in ciliated protozoa: Feeding rates and their ecological significance. Microb. Ecol. 6: 13–25.CrossRefPubMedGoogle Scholar
  11. Fenchel, T., 1980b. Suspension feeding in ciliated protozoa: Functional response and particle size selection. Microb. Ecol. 6: 1–11.CrossRefPubMedGoogle Scholar
  12. Finlay, B. J., 1978. Community production and respiration by ciliated protozoa in the benthos of a small eutrophic loch. Freshwat. Biol. 8: 327–341.CrossRefGoogle Scholar
  13. Finlay, B. J., 1980. Temporal and vertical distribution of ciliophoran communities in the benthos of a small eutrophic loch with particular reference to the redox profile. Freshwat. Biol. 10: 15–34.CrossRefGoogle Scholar
  14. Finlay, B. J., P. Bannister & J. Stewart, 1979. Temporal variation in benthic ciliates and the application of association analysis. Freshwat. Biol. 9: 45–53.CrossRefGoogle Scholar
  15. Gates, M. A., 1984. Quantitative importance of ciliates in the planktonic biomass of lake ecosystems. Hydrobiologia 108: 233–238.CrossRefGoogle Scholar
  16. Gates, M. A., A. Rogerson & J. Berger, 1982. Dry to wet weight biomass conversion constant for Tetrahymena elliotti (Ciliophora, Protozoa). Oecologia 55: 145–148.CrossRefGoogle Scholar
  17. Gates, M. A., U. T. Lewg, 1984. Contribution of ciliated protozoa to the planktonic biomass in a series of Ontario lakes: Quantitative estimates and dynamical relationships. J. Plankton Res. 6: 443–455.CrossRefGoogle Scholar
  18. Godeanu, S. P., 1978. Specificity of the zooplankton in several lakes from Northern Germany with different degree of eutrophication. Verh. int. Ver. Limnol. 20: 963–968.Google Scholar
  19. Goulder, R., 1974. The seasonal and spatial distribution of some benthic ciliated protozoa in Esthwaite water. Freshwat. Biol. 4: 127–147.CrossRefGoogle Scholar
  20. Hecky, R. E., E. J. Fee, H. Kling & J. W. M. Rudd, 1978. Studies on the planktonic ecology of Lake Tanganyika. Fisheries and Marine Service Technical Report No. 816.Google Scholar
  21. Heinbokel, J. F. & J. R. Beers, 1979. Studies on the functional role of tintinnids in the Southern California bight. III. Grazing impact of natural assemblages. Mar. Biol. 52: 23–32.CrossRefGoogle Scholar
  22. Hunt, G. W. & S. M. Chein, 1983. Seasonal distribution, composition and abundance of the planktonic Ciliata of Cayuga Lake. Hydrobiologia 98: 257–266.CrossRefGoogle Scholar
  23. Lewis, W. M., Jr., 1985. Protozoan abundances in the plankton of two tropical lakes. Arch. Hydrobiol. 104: 337–342.Google Scholar
  24. Mamaeva, N. V., 1976. Planktonic ciliates in the Ivan'Kovsky Water Reservoir (in Russian). Zool. Zh. 55: 657–664.Google Scholar
  25. Nauwerck, A., 1963. Die beziehugen zwischen zooplankton and phytoplankton im see Erken. Symbolae Botanicas Upsalienses 17: 1–163.Google Scholar
  26. Pace, M. L., 1986. An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol. Oceanogr. 31: 45–55.CrossRefGoogle Scholar
  27. Pace, M. L., 1982. Planktonic ciliates: Their distribution, abundance, and relationship to microbial resources in a monomictic lake. Can. J. Fish. Aquat. Sci. 39: 1106–1116.CrossRefGoogle Scholar
  28. Pace, M. L. & J. D. Orcutt, Jr., 1981. The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnol. Oceanogr. 26: 822–830.CrossRefGoogle Scholar
  29. Paerl, H. W. & L. A. Mackenzie, 1977. A comparative study of the diurnal carbon fixation patterns of nannoplankton and net plankton. Limnol. Oceanogr. 22: 732–738.CrossRefGoogle Scholar
  30. Porter, K. G., M. L. Pace & J. F. Battey, 1979. Ciliate protozoans as links in freshwater planktonic food chains. Nature 277: 563–565.CrossRefGoogle Scholar
  31. Psenner, R. & K. Schlott-Idl, 1985. Trophic relationships between bacteria and protozoa in the hypolimnion of a meromictic lake. Hydrobiologia 121: 111–120.CrossRefGoogle Scholar
  32. SAS Institute, Inc., 1982. SAS User's Guide: Statistics. SAS Institute, Inc. 584 pp.Google Scholar
  33. Sorokin, Y. I., 1972. Biological productivity of the Rybinsk Reservoir. In Productivity problems of freshwaters, (eds) Z. Kajak and A. Hillbricht-Ilkouska. Polish Scientific Publishers, Warszawa-Krakow. pp. 493–503.Google Scholar
  34. Sorokin, Y. I. & E. B. Paveljeva, 1972. On the quantitative characteristics of the pelagic ecosystem of Dalnee Lake (Kamachatka). Hydrobiologia 40: 519–552.CrossRefGoogle Scholar
  35. Taylor, W. D. & D. R. S. Lean, 1981. Radiotracer experiments on phosphorus uptake and release by limnetic microzooplankton. Can. J. Fish. aquat. Sci. 38: 1316–1321.CrossRefGoogle Scholar
  36. Zaret, T. M., 1980. Predation and freshwater ecosystems. Yale.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • John R. Beaver
    • 1
  • Thomas L. Crisman
    • 1
  1. 1.Department of Environmental Engineering SciencesUniversity of FloridaGainesvilleUSA

Personalised recommendations