Advertisement

Hydrobiologia

, Volume 232, Issue 3, pp 211–218 | Cite as

The tetrazolium reduction method for assessing the viability of individual bacterial cells in aquatic environments: improvements, performance and applications

  • Philippe Dufour
  • Michel Colon
Article

Abstract

The electron transport system of respiring organisms reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan. Active bacterial cells may be recognized under the microscope by epifluorescence and by the simultaneous presence, seen under bright light field of optically dense intracellular deposits of INT-formazan. An improved procedure that leads to a sharp definition of cells and formazan deposits is presented here. Cells are concentrated on cellulose membrane filters of 0.1 µm porosity which are rendered further transparent prior to immersion of the cells in a layer of 4′, 6-diaminidino-2-phenylindole (DAPI) s′ fluorochrome. This process leads to two significant improvements: (1) the fluorochrome is not trapped inside the membrane, which decreases the background fluorescence and leads to a better detection of the small cells; (2) the cells are immersed in an aqueous solution, which prevents rapid dissolution of the formazan crystals which would be expected if they were in contact with oily clearing agents. Tests on formazan labelling and on storage of INT-processed samples suggest other precautions for reliable use. Improved in this way, the method is simple, rapid and has numerous applications in environmental studies, ecophysiology and ecotoxicology. Some examples are given, with 2 to 98% of INT reducing cells observed, depending on different environmental conditions.

Key words

bacteria direct counts dormancy ETS activity bacterial activity methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bitton, G., R. J. Dutton & J. A. Foran, 1983. New rapid technic for counting microorganisms directly on membrane filters. Stain Technol. 58: 343–346.PubMedGoogle Scholar
  2. Bright, J. J. & M. Fletcher, 1983. Amino acid assimilation and electron transport activity in attached and free-living marine bacteria. Appl. envir. Microbiol. 43: 818–825.Google Scholar
  3. Chrzanowski, T. H., R. D. Crotty, J. G. Hubbard & R. P. Welch, 1984. Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater. Microb. Ecol. 10: 179–185.CrossRefGoogle Scholar
  4. Dufour, P., J. P. Torreton & M. Colon, 1990. Advantages of distinguishing the active fraction in bacterioplankton assemblages: some examples. In D. J. Bonin & H. L. Golterman (eds), Fluxes between trophic levels and through the water-sediment interface. Hydrobiologia 207: 295–301.Google Scholar
  5. Ellar, D. L., E. Munoz & M. R. J. Salton, 1970. The effect of low concentration of glutaraldehyde on Micrococcus hysodeikticus membranes: changes in the release of membrane associated enzymes and membrane structure. Biochem. Biophys. Acta 225: 140–150.Google Scholar
  6. Harvey, R. W. & L. Y. Young, 1980. Enumeration of particle bound and unattached respiring bacteria in the salt marsh environment. Appl. envir. Microbiol. 40: 156–160.Google Scholar
  7. Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria by fluorescent microscopy. Appl. envir. Microbiol. 33: 1225–1228.Google Scholar
  8. Iturriaga, R., 1979. Bacterial activity related to sedimenting particulate matter. Mar. Biol. 55: 157–169.CrossRefGoogle Scholar
  9. Jones, J. G., 1974. Some observations on direct counts of freshwater bacteria obtained with a fluorescence microscope. Limnol. Oceanogr. 19: 540–543.Google Scholar
  10. King, L. K. & B. C. Parker, 1988. A simple, rapid method for enumerating total viable and metabolically active bacteria in groundwater. Appl. envir. Microbiol. 54: 1630–1631.Google Scholar
  11. Kogure, K., U. Simudu & N. Taga, 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25: 415–420.PubMedCrossRefGoogle Scholar
  12. Lovell, C. R. & A. Konopka, 1985. Seasonal bacterial production in a dimictic lakes as measured by increases in cell numbers and thymidine incorporation. Appl. envir. Microbiol. 49: 492–500.Google Scholar
  13. Mac Donald, R. M., 1980. Cytochemical demonstration of catabolism in soil microorganisms. Soil Biol. Biochem. 12: 419–423.CrossRefGoogle Scholar
  14. Maki, J. S. & C. C. Remsen, 1981. Comparison of two direct-count methods for determining metabolizing bacteria in freshwater. Appl. envir. Microbiol. 41: 132–1138.Google Scholar
  15. Meyer-Reil, L. A., 1978. Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters. Appl. envir. Microbiol. 36: 506–512.Google Scholar
  16. Newell, S. Y., 1984. Modification of the gelatin-matrix method for enumeration of respiring bacterial cells for use with salt-marsh water samples. Appl. envir. Microbiol. 47: 873–875.Google Scholar
  17. Novitsky, J. A. & R. Y. Morita, 1978. Possible strategy for the survival of marine bacteria under starvation conditions. Mar. Biol. 48: 289–295.CrossRefGoogle Scholar
  18. Packard, T. T., 1985. Measurement of electron transport activity of microplankton. Adv. aquat. Microbiol. 3: 207–261.Google Scholar
  19. Packard, T. T., P. C. Garfield & R. Martinez, 1983. Respiration and enzyme activity in aerobic and anaerobic cultures of the marine denitrifying bacterium. Pseudomonas perfectomarinus. Deep Sea Res. 30: 227–243.CrossRefGoogle Scholar
  20. Porter, K. J. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.CrossRefGoogle Scholar
  21. Quinn, J. P., 1984. The modification and evaluation of some cytochemical techniques for the enumeration of metabolically active heterotrophic bacteria in the aquatic environment. J. appl. Bact. 57: 51–57.Google Scholar
  22. Smith, A. J. & D. S. Hoare, 1977. Specialist phototrophs, lithotrophs, and methylotrophs: a unity among a diversity of procaryotes? Bact. Rev. 41: 419–448.PubMedGoogle Scholar
  23. Stevenson, L. H., 1978. A case for bacterial dormancy in aquatic systems. Microbiol. Ecol. 4: 127–133.CrossRefGoogle Scholar
  24. Tabor, P. S. & R. A. Neihof, 1982. Improved method for determination of respiring individual microorganisms in natural waters. Appl. envir. Microbiol. 43: 1249–1255.Google Scholar
  25. Von Bielig, H. G., G. A. Kausche & H. Haardick, 1949. Uber den Nachweiß von Reduktion in Bakterian. Z. Naturforsch. 46: 80–91.Google Scholar
  26. Zimmerman, R., R. Iturriaga & J. Becker-Birck, 1978. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. envir. Microbiol. 36: 926–935.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Philippe Dufour
    • 1
  • Michel Colon
    • 1
  1. 1.Antenne ORSTOM - Station d Hydrobiologie lacustre de l'INRAThonon les bainsFrance

Personalised recommendations