Advertisement

Hydrobiologia

, Volume 240, Issue 1–3, pp 203–211 | Cite as

Effects of fish predation on larval chironomid (Diptera: Chironomidae) communities in an arctic ecosystem

  • Andrew P. Goyke
  • Anne E. Hershey
Article

Abstract

Chironomid communities were analyzed in systems with three types of predator regimes to determine hierarchical effects of predation; ponds without fish present, lakes with slimy sculpin (Cottus cognatus) present, and lakes with slimy sculpin present along with burbot (Lota Iota) and lake trout (Salvelinus namaycush). Samples were collected by coring bare sediment habitats in 4 systems of each type near the Toolik Lake field station in northern Alaska. Lakes with burbot and lake trout present in addition to slimy sculpin displayed significantly higher (P<0.05) biomass, density, richness, and diversity. This is likely due to the increased complexity of the predator regime. Ponds without fish had a significantly greater percentage of predacious chironomids present.

Key words

arctic chironomidae diversity predation slimy sculpin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. O., 1959. A modified flotation technique for sorting bottom fauna samples. Limnol. Oceanogr. 4: 223–225.Google Scholar
  2. Ball, R. C. & D. W. Hayne, 1952. Effects of the removal of the fish population on the fish-food organisms of a lake. Ecology 33: 41–48.CrossRefGoogle Scholar
  3. Becker, G. C., 1983. Fishes of Wisconsin. University of Wisconsin Press. Madison, Wisconsin, USA.Google Scholar
  4. Cody, M. L., 1975. Towards a theory of continental species diversity. In M. L. Cody & J. M. Diamond (ed.), Ecology and evolution of communities. Harvard University Press, Cambridge, Massachusetts, USA: 214–257.Google Scholar
  5. Coffman, W. P. & L. C. Ferrington, 1984. Chironomidae. In R. W. Merritt & K. W. Cummins (ed.), An introduction to the aquatic insects of North America. Kendall/Hunt, Dubuque, Iowa, USA/ 551–645.Google Scholar
  6. Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.CrossRefGoogle Scholar
  7. Cuker, B. E., 1981. Control of epilithic community structure in an arctic lake by vertebrate predation and invertebrate grazing. PhD Thesis. North Carolina State University, Raleigh, North Carolina, USA.Google Scholar
  8. Cummins, K. W. & W. P. Coffman, 1984. Table 25A, Summary of ecological and distributional data for Chironomidae (Diptera). In R. W. Merritt & K. W. Cummins (eds), An introduction to the aquatic insects of North America. Kendall/Hunt, Dubuque, Iowa, USA: 644–652.Google Scholar
  9. Gerking, S. D., 1962. Production and food utilization in a population of bluegill sunfish. Ecol. Monogr. 32: 31–78.CrossRefGoogle Scholar
  10. Gilinsky, E., 1984. The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology 65: 455–468.CrossRefGoogle Scholar
  11. Hall, D. J., W. E. Cooper & E. E. Werner, 1970. An experimental approach to the production dynamics of freshwater animal communities. Limnol. Oceanogr. 15: 839–928.CrossRefGoogle Scholar
  12. Hayne, D. W. & R. C. Ball, 1956. Benthic productivity as influenced by fish predation. Limnol. Oceanogr. 1: 162–175.Google Scholar
  13. Hershey, A. E., 1985a. Effects of predatory sculpin on the chironomid communities in an arctic lake. Ecology 66: 1131–1138.CrossRefGoogle Scholar
  14. Hershey, A. E., 1985b. Littoral chironomid communities in an arctic Alaskan lake. Holarct. Ecol. 42: 483–487.Google Scholar
  15. Hershey, A. E., 1990. Snail populations in arctic lakes: competition mediated by predation? Oecologia (Berl.) 82: 26–32.CrossRefGoogle Scholar
  16. Hilsenhoff, W. L., 1967. Ecology and population dynamics of Chironomus plumosis (Diptera: Chironomidae) in Lake Winnebago, Wisconsin. Ann. ent. Soc. Am. 60: 1183–1194.Google Scholar
  17. Krebs, C. J., 1978. Ecology: The experimental analysis of distribution and abundance, second edition. Harper and Row, New York, NY, USA.Google Scholar
  18. McDonald, M. E., B. E. Cuker & S. C. Mozley, 1982. Distribution, production, and age structure of slimy sculpin in an arctic lake. Envir. Biol. Fishes 7: 171–176.CrossRefGoogle Scholar
  19. Merrick, G. W., 1989. Lake trout (Salvelinus namaycush) and benthic community ecology in an arctic ecosystem. M.S. thesis. University of Minnesota-Duluth, Duluth, Minnesota, USA.Google Scholar
  20. Miller, M. C., G. R. Hater, P. Spatt, P. Westlake & D. Yeakel, 1986. Primary production and its control in Toolik Lake, Alaska. Arch. Hydrobiol./Suppl. 4: 97–131.Google Scholar
  21. Mittelbach, G. G., 1986. Predator-mediated habitat use: some consequences for species interactions. In C. A. Simmenstad & G. M. Cailliet (ed.), Contemporary studies on fish feeding. Dr. W. Junk, Dordrecht, Netherlands: 159–169.Google Scholar
  22. Montgomery, D. C., 1984. Design and analysis of experiments. John Wiley & Sons, New York, New York, USA.Google Scholar
  23. Oliver, D. R., 1968. Adaptations of arctic Chironomidae. Ann. Zool. Fenn. 5: 111–118.Google Scholar
  24. Paine, R. T., 1966. Food web complexity and species diversity. Am. Nat. 100: 65–75.CrossRefGoogle Scholar
  25. Pielou, E. C., 1975. Ecological diversity. John Wiley & Sons. New York, New York, USA.Google Scholar
  26. Power, M. E. & W. J. Matthews, 1983. Algae-grazing minnows (Campstoma anomallum), piscivorous bass (Micropterus spp.), and the distribution of attached algae in a small prairie-margin stream. Oecologia 60: 328–332.CrossRefGoogle Scholar
  27. Power, M. E., W. J. Matthews & A. J. Stewert, 1985. Grazing minnows, piscivorous bass, and stream algae: Dynamics of a strong interaction. Ecology 66: 1448–1456.CrossRefGoogle Scholar
  28. SAS Institute, 1985. SAS users guide: statistics, version 5 edition. SAS Institute, Cary, North Carolina, USA.Google Scholar
  29. Schmidt, D. & W. J. O'Brien, 1982. Planktivorous feeding ecology of arctic grayling (Thymallus arcticus). Can. J. Fish. aquat. Sci. 39: 475–482.CrossRefGoogle Scholar
  30. Seaburg, K. G. & J. B. Moyle, 1964. Feeding habits, digestive rates, and growth of Minnesota warmwater fishes. Trans. am. Fish. Soc. 93: 269–285.CrossRefGoogle Scholar
  31. Sih, A., 1982. Foraging strategies and the avoidance of predation by an aquatic insect, Notenecta hoffmanni. Ecology 63: 786–796.CrossRefGoogle Scholar
  32. Smock, L. A., 1980. Relationship between body size and biomass of aquatic insects. Freshwat. Biol. 10: 375–383.CrossRefGoogle Scholar
  33. Stein, R. A. & J. J. Magnuson, 1976. Behavioral response of crayfish to a fish predator. Ecology 57: 751–761.CrossRefGoogle Scholar
  34. Thorp, J. H. & E. A. Bergey, 1981a. Field experiments on responses of a freshwater, benthic macroinvertebrate community to vertebrate predators. Ecology 62: 365–375.CrossRefGoogle Scholar
  35. Thorp, J. H. & E. A. Bergey, 1981b. Field experiments on the interactions between vertebrate predators and larval midges (Diptera: Chironomidae) in the littoral zone of a reservoir. Oecologia (Berl.) 50: 285–290.CrossRefGoogle Scholar
  36. Walker, I. R. & R. W. Mathewes, 1988. Late-quaternary fossil Chironomidae (Diptera) from Hippa Lake, Queen Charlotte Islands, British Columbia, with special reference to Corynocera Zett. Can. Ent. 120: 739–451.CrossRefGoogle Scholar
  37. Welch, H. E., 1976. Ecology of Chironomidae (Diptera) in a polar lake. J. Fish. Res. Bd Can. 33: 227–247.Google Scholar
  38. Werner, E. E. & D. J. Hall, 1976. Niche shifts in sunfishes: experimental evidence and significance. Science (Washington, D.C.) 191: 404–406.Google Scholar
  39. Werner, E. E., J. F. Gilliam, D. J. Hall & G. G. Mittelbach, 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64: 1540–1548.CrossRefGoogle Scholar
  40. Wiederholm, T. (ed.), 1983. Chironomidae of the holarctic region. Ent. Scand. Suppl. 19: 1–457.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Andrew P. Goyke
    • 1
  • Anne E. Hershey
    • 1
  1. 1.Department of BiologyUniversity of Minnesota-DuluthDuluthUSA

Personalised recommendations