, Volume 240, Issue 1–3, pp 71–81 | Cite as

Water and sediment export of the upper Kuparuk River drainage of the North Slope of Alaska

  • Keith Kriet
  • Bruce J. Peterson
  • Teresa L. Corliss


Stream discharge and fine suspended sediment load were determined for the upper Kuparuk River, a clear-water tundra stream and tributary of the main Kuparuk River of the North Slope of Alaska. From 75 observations over 3 years we found a range of flows of 0.3 to 28.3 m3 sec−1 and a range of sediment loads of 0.4 to 35 mg liter−1. Specific water yields of 15.7, 29.7 and 33.2 cm and summer specific sediment yields of 0.5, 1.1 and 3.5 metric tons km−2 were estimated for the period 20 May through freeze-up in 1978, 1979 and 1980, respectively. The fine suspended sediment concentrations and yields for the upper Kuparuk River were less than those in many temperate streams but similar to those reported for small rivers draining the taiga of the Mackenzie Valley lowlands in subarctic Canada.


Sediment Load Sediment Concentration Sediment Yield Suspend Sediment Concentration United States Geological Survey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnborg, L., H. J. Walker & J. Peippo, 1967. Suspended load in the Colville River, Alaska, 1962. Geogr. Ann. 49A: 131–144.CrossRefGoogle Scholar
  2. Bormann, F. H., G. E. Likens & J. S. Eaton, 1969. Biotic regulation of particulate and solution losses from a forest ecosystem. BioScience 19: 600–610.CrossRefGoogle Scholar
  3. Brunskill, G. J., P. Campbell, S. E. M. Elliott, B. W. Graham, W. J. Dentry & R. Wagemann, 1975. The chemistry, mineralogy and rates of transport of sediments in the Mackenzie and Porcupine River watersheds, N.W.T. and Yukon, 1971–1973. Technical Report No. 546. Canada Department of the Environment, Fisheries and Marine Service, Freshwater Institute, Winnipeg, Manitoba.Google Scholar
  4. Craig, P. C. & P. J. McCart, 1975. Classification of stream types in Beaufort Sea drainages between Prudhoe Bay, Alaska and the Mackenzie delta, N.W.T., Canada. Arctic and Alpine Research 7: 183–198.CrossRefGoogle Scholar
  5. de March, L., 1975. Nutrient budgets for a high arctic lake (Char Lake, N.W.T.). Mitt. Int. Ver. Theor. Angew. Limnol. 19: 496–503.Google Scholar
  6. Dingman, S. L., 1966. Characteristics of summer runoff from a small watershed in central Alaska. Wat. Resour. Res. 2: 751–754.Google Scholar
  7. Dunne, T. & L. B. Leopold, 1978. Water in Environmental Planning. W.H. Freeman and Co., San Francisco.Google Scholar
  8. Finney, D. J., 1941. On the distribution of a variable whose logarithm is normally distributed. J. r. Statist. Soc. B7: 155–161.Google Scholar
  9. Frey, P. J., E. W. Mueller & E. C. Berry, 1970. The Cheno River. The study of a subarctic stream. Federal Water Quality Administration Project No. 1810–10/70.Google Scholar
  10. Gregory, K. J. & D. E. Walling, 1973. Drainage basin form and process. London, Arnold. 456 pp.Google Scholar
  11. Hopkins, D. M. & T. N. V. Karstrom, 1955. Permafrost and groundwater in Alaska. United States Geological Survey, Professional Paper No. 254-F.Google Scholar
  12. Leopold, L. B., M. G. Wolman & J. P. Miller, 1964. Fluvial Processes in Geomorphology. W.H. Freeman and Co., San Francisco.Google Scholar
  13. Miller, D. M., 1984. Reducing transformation bias in curve fitting. Am. Statist. 38: 124–1265.CrossRefGoogle Scholar
  14. Ongley, E. D., 1976. Sediment yields and nutrient loadings from Canadian watersheds tributary to Lake Erie: An overview. J. Fish. Res. Bd Can. 33: 471–484.Google Scholar
  15. Peterson, B. J., J. E. Hobbie, T. L. Corliss & K. Kriet, 1983. A continuous-flow periphyton bioassay: Tests of nutrient limitation in a tundra stream. Limnol. Oceanogr. 28: 583–591.CrossRefGoogle Scholar
  16. Peterson, B. J., J. E. Hobbie, A. Hershey, M. Lock, T. Ford, R. Vestal, M. Hullar, R. Ventullo & G. Volk, 1985. Transformation of a tundra river from heterotrophy to autotrophy by addition of phosphorus. Science 229: 1383–1386.PubMedGoogle Scholar
  17. Scott, K. M., 1978. Effects of permafrost on stream channel behavior in arctic Alaska. United States Geological Survey, Professional Paper No. 1068. 19 pp.Google Scholar
  18. Selkregg, L. L. (ed.), 1977. Alaskan Regional Profiles: Arctic Region. Arctic Environmental Information and Data Center, Anchorage, Alaska.Google Scholar
  19. United States Geological Survey, 1978. Water resources data for Alaska. Report AK-78–1. NTIS. Springfield, VA. 425 pp.Google Scholar
  20. United States Geological Survey, 1979. Water resources data for Alaska. Report AK-79–1. NTIS. Springfield, VA. 365 pp.Google Scholar
  21. United States Geological Survey, 1980. Water resources data for Alaska. Report AK-80–1. NTIS. Springfield, VA. 373 pp.Google Scholar
  22. Zalesskiy, F. V., 1976. Flash flood formation in permafrost regions. Soviet Hydrology (selected papers) 15: 95–97. Am. Geophys. Union.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Keith Kriet
    • 1
  • Bruce J. Peterson
    • 2
  • Teresa L. Corliss
    • 3
  1. 1.School of ForestryYale UniversityNew HavenUSA
  2. 2.Marine Biological LaboratoryThe Ecosystems CenterWoods HoleUSA
  3. 3.DurhamUSA

Personalised recommendations