Advertisement

Hydrobiologia

, Volume 240, Issue 1–3, pp 45–59 | Cite as

Biogeochemistry of manganese- and iron-rich sediments in Toolik Lake, Alaska

  • Jeffrey C. Cornwell
  • George W. Kipphut
Article

Abstract

The sediments within Toolik Lake in arctic Alaska are characterized by extremely low rates of organic matter sedimentation and unusually high concentrations of iron and manganese. Pore water and solid phase measurements of iron, manganese, trace metals, carbon, nitrogen, phosphorus, and sulfur are consistent with the hypothesis that the reduction of organic matter by iron and manganese is the most important biogeochemical reaction within the sediment. Very low rates of dissolved oxygen consumption by the sediments result in an oxidizing environment at the sediment-water interface. This results in high retention of upwardly-diffusing iron and manganese and the formation of metal-enriched sediment. Phosphate in sediment pore waters is strongly adsorbed by the metal-enriched phases. Consequently, fluxes of phosphorus from the sediments to overlying waters are very small and contribute to the oligotrophic nature of the Toolik Lake aquatic system. Toolik Lake contains an unusual type of lacustrine sediment, and in many ways the sediments are similar to those found in oligotrophic oceanic environments.

Key words

arctic lakes trace metals lake sediments manganese iron phosphorus sediment-water flux diagenesis Toolik Lake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. G., S. L. Schiff & R. H. Hesslein, 1987. Determining sediment accumulation and mixing rates using 210Pb, 137Cs and other tracers: problems due to post-depositional mobility or coring artifacts. Can. J. Fish. aquat. Sci. 44: 231–250.CrossRefGoogle Scholar
  2. Baccinni, P., 1985. Phosphate interactions at the sedimentwater interface. In W. Stumm (ed.) Chemical Processes in Lakes. John Wiley & Sons, New York. p435 p.Google Scholar
  3. Bender, M. L. & D. T. Heggie, 1984. Fate of organic carbon reaching the sea floor: a status report. Geochim. Cosmochim. Acta 48: 977–986.CrossRefGoogle Scholar
  4. Bray, J. T., O. P. Bricker & B. N. Troup, 1974. Phosphate in interstitial waters of anoxic sediments: oxidation effects during sampling procedure. Science 180: 1362–1363.Google Scholar
  5. Brown, J. R. L. Berg, 1980. Environmental engineering and ecological baseline investigations along the Yukon River-Prudhoe Bay Haul Road. CRREL Report 80–19.Google Scholar
  6. Burdige, D. J. & J. M. Gieskes, 1983. A pore water/solid phase diagenetic model for manganese in marine sediments. Am. J. Sci. 283: 29–47.CrossRefGoogle Scholar
  7. Calvert, S. E. & N. B. Price, 1977. Shallow water, continental margin and lacustrine nodules: distributions and geochemistry. In G. P. Glasby (ed.), Marine Manganese Deposits, Elsevier, Amsterdam.Google Scholar
  8. Canfield, D.E., R. Raiswell, J. T. Westrich, C. M. Reaves & R. A. Berner, 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54: 149–155.CrossRefGoogle Scholar
  9. Carignan, R. & R. J. Flett, 1981. Post depositional mobility of phosphorus in lake sediments. Limnol. Oceanogr. 26: 361–366.CrossRefGoogle Scholar
  10. Chanton, J. C., C. S. Martens & G. W. Kipphut, 1983. Lead210 sediment geochronology in a changing coastal environment. Geochim. Cosmochim. Acta 47: 1791–1804.CrossRefGoogle Scholar
  11. Coakley, J. P. & B. R. Rust, 1968. Sedimentation in an arctic lake. J. Sediment. Petrol. 38: 1290–1300.Google Scholar
  12. Cornwell, J. C., 1983. The geochemistry of manganese, iron and phosphorus in an arctic lake. Ph.D. Dissertation, University of Alaska, Fairbanks. 238 pp.Google Scholar
  13. Cornwell, J. C., 1985. Sediment accumulation rates in an Alaskan arctic lake using a modified 210Pb technique. Can. J. Fish. aquat. Sci. 42: 809–814.Google Scholar
  14. Cornwell, J. C., 1986. Diagenetic trace metal profiles in arctic lake sediments. Envir. Sci. Technol. 20: 299–302.CrossRefGoogle Scholar
  15. Cornwell, J. C., 1987a. Phosphorus cycling in arctic lake sediments: adsorption and authigenic minerals. Arch. Hydrobiol. 109: 161–179.Google Scholar
  16. Cornwell, J. C., 1987b. Migration of metals in sediment pore waters: problems for the interpretation of historical deposition rates. In Proceedings of the 6th International Conference on Heavy Metals in the Environment, Vol. 2, p. 233–235, New Orleans.Google Scholar
  17. Cornwell, J. C. & S. Banahan, 1992. A silicon budget for an Alaskan arctic lake. Hydrobiologia 240: 37–44.Google Scholar
  18. Cornwell, J. C. & J. W. Morse, 1987. The characterization of iron sulfide minerals in anoxic marine sediments. Mar. Chem. 22: 193–206.CrossRefGoogle Scholar
  19. Dean, W. E., W. S. Moore & K. H. Nealson, 1981. Manganese cycles and the origin of manganese nodules, Oneida Lake, New York, USA. Chem. Geol. 34: 53–64.CrossRefGoogle Scholar
  20. de March, L., 1978. Permanent sedimentation of nitrogen, phosphorus and organic carbon in a high arctic lake. J. Fish. Res. Bd Can. 35: 1089–1094.Google Scholar
  21. Evans, R. D. & F. H. Rigler, 1980. Measurement of whole lake sediment accumulation using Pb-210 retention. Can. J. Fish. aquat. Sci. 37: 817–822.Google Scholar
  22. Evans, R. D. & F. H. Rigler, 1983. A test of Pb-210 dating for the measurement of whole lake soft sediment accumulation. Can. J. Fish. aquat. Sci. 40: 506–515.Google Scholar
  23. Farmer, J. G. & M. A. Lovell, 1984. Massive diagenetic enhancement of manganese in Loch Lomond sediments. Envir. Technol. Lett. 5: 257–262.Google Scholar
  24. Forstner, U. & G. T. W. Wittman, 1979. Metal Pollution in the Aquatic Environment. Springer Verlag, Berlin.Google Scholar
  25. Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartmann & V. Maynard, 1979. Early diagenesis of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43: 1075–1090.CrossRefGoogle Scholar
  26. Gilbert, R. & M. Church, 1983. Contemporary sedimentary environments of Baffin Island, N.W.T., Canada: Reconnaissance of takes on Cumberland Peninsula. Arct. Alp. Res. 15: 321–332.CrossRefGoogle Scholar
  27. Gorham, E. & D. J. Swaine, 1965. The influence of oxidizing and reducing conditions upon the distribution of some elements in lake sediments. Limnol. Oceanogr. 10: 268–279.Google Scholar
  28. Gubala, C. P., 1990 Effects of iron cycling on 210Pb dating of sediments in an Adirondack Lake, USA. Can. J. Fish. aquat. Sci. 47: 1821–1829.Google Scholar
  29. Hamilton, T. D. & S. C. Porter, 1975. Itkillik glaciation in the Brooks Range, northern Alaska. Quat. Res. 5: 471–497.CrossRefGoogle Scholar
  30. Hermanson, M. H., 1990. 210Pb and 137Cs chronology from small, shallow arctic lakes. Geochim. Cosmochim. Acta. 54: 1443–1452.CrossRefGoogle Scholar
  31. Hobbie, J. E., 1973. Arctic limnology, a review. In M. E. Britton (ed.), Alaskan arctic tundra. Arctic Institute of North America Technical Paper 25.Google Scholar
  32. Hobbie, J. E., T. L. Corliss & B. J. Peterson, 1983. Seasonal patterns of bacterial abundance in an arctic lake. Arct. Alp. Res. 15: 253–259.CrossRefGoogle Scholar
  33. Johnston, C. G. & G. W.Kipphut, 1988. Microbially mediated Mn(II) oxidation in an oligotrophic arctic lake. Appl. Envir. Microbiol. 54: 1440–1445.Google Scholar
  34. Jorgensen, B. B., 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr. 22: 814–832.Google Scholar
  35. Klassen, R. A., I. Nichol & W. W. Shilts,1975. Lake geochemistry in the Kaminak Lake area, District of Keewatin, N.W.T. Verh. int. Ver. Limnol. 19: 340–348.Google Scholar
  36. Klingensmith, K. M. & V. Alexander, 1983. Sediment nitrification, denitrification and nitrous oxide production in a deep arctic lake. Appl. envir. Microbiol. 46: 1084–1092.Google Scholar
  37. Kipphut, G. W., 1978. An investigation of sedimentary processes in lakes. Ph.D. Thesis, Columbia University, New York. 180 p.Google Scholar
  38. Kipphut, G. W., 1988. Sediments and organic carbon cycling in an arctic lake. In E. T. Degens, gnS. Kempe & A. S. Naidu (eds), Transport of Carbon and Minerals in Major World Rivers, Lakes, and Estuaries. Mitt. Geol.-Palaont. Inst. Univ. Hamburg, SCOPE/UNEP, 66: 129–135.Google Scholar
  39. Kling, G. W., W. J. O'Brien, M. C. Miller & A. E. Hershey, 1992. The biogeochemistry and zoogeography of lakes and rivers in arctic Alaska. Hydrobiologia 240: 1–14.Google Scholar
  40. Krauskopf, K. B., 1957. Separation of manganese from iron in sedimentary processes. Geochim. Cosmochim. Acta 12: 61–68.CrossRefGoogle Scholar
  41. Krom, M. D. & R. A. Berner, 1981. The diagenesis of phosphorus in a nearshore marine sediment. Geochim. Cosmochim. Acta 45: 207–216.CrossRefGoogle Scholar
  42. Livingstone, D. A., K. Bryan Jr. & R. G. Leahy, 1958. Effects of an arctic environment on the origin and development of freshwater lakes. Limnol. Oceanogr. 3: 192–214.Google Scholar
  43. Medlin, J. H., N. H. Suhr & J. B. Bodkin, 1969. Atomic absorption analysis of silicates employing LiBO2. At. Abs. Newsl. 8: 25–29.Google Scholar
  44. Miller, M. C., G. R. Hater, P. Spatt, P. Westlake & D. Yeakel, 1986. Primary production and its control in Toolik Lake, Alaska. Arch. Hydrobiol. Suppl. 74: 97–131.Google Scholar
  45. Morse, J. W. & J. C. Cornwell, 1987. Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments. Mar. Chem. 22: 55–69.CrossRefGoogle Scholar
  46. Mothersill, J. S. & R. J. Shegelski, 1973. The formation of iron and manganese-rich layers in the sediments of Thunder Bay, Lake Superior. Can. J. Earth Sci. 10: 571–576.Google Scholar
  47. Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York. 173 pp.Google Scholar
  48. Prentki, R. T., M. C. Miller, R. J. Barsdate, V. Alexander, J. Kelley & P. Coyne, 1980. Chemistry. In J. Hobbie (ed.), Limnology of Tundra Ponds. Dowden, Hutchinson and Ross, Stroudsburg, Pa.: 76–178.Google Scholar
  49. Raad, A. T., R. Protz & R. L. Thomas, 1969. Determination of Na-dithionate and NH4-oxalate extractable Fe, A1 and Mn in soils by atomic absorption spectrophotometry. Can. J. Soil Sci. 49: 89–94.Google Scholar
  50. Reeburgh, W. S., 1967. An improved interstitial water sampler. Limnol. Oceanogr. 12: 163–165.Google Scholar
  51. Reeburgh, W. S., 1983. Rates of biogeochemical processes in anoxic sediments. Ann. Rev. Earth Planet Sci. 11: 269–298.CrossRefGoogle Scholar
  52. Rigler, F. H., 1978. Limnology in the high arctic: a case study of Char Lake. Verh. int. Ver. Limnol. 20: 127–140.Google Scholar
  53. Robbins, J. A., 1978. Geochemical and geophysical applications of radioactive lead. In J. O. Nriagu (ed.) The Biogeochemistry of Lead in the Environment. Elsevier, Amsterdam.Google Scholar
  54. Robbins, J. A. & E. Callender, 1975. Diagenesis of manganese in Lake Michigan sediments. Am. J. Sci. 275: 512–533.CrossRefGoogle Scholar
  55. Schindler, D. W., H. E. Welch, J. Kalff, G. J. Brunskill, H. Kling & N. Kritsch, 1974. Physical and chemical limnology of Char Lake, Cornwallis Island. J. Fish. Res. Bd. Can. 31: 587–607.Google Scholar
  56. Sozanski, A. G. & D. S. Cronan, 1979. Ferromanganese concretions in Shebandowan Lakes, Ontario. Can. J. Earth Sci. 16: 126–140.Google Scholar
  57. Strakhov, N. M., 1966. Types of manganese accumulation in present-day basins: their significance in understanding manganese mineralization. Int. Geol. Rev. 8: 1172–1196.CrossRefGoogle Scholar
  58. Stainton, M. P., 1973. A syringe gas stripping procedure for gas chromatographic determination of dissolved inorganic and organic carbon in freshwater and carbonates in sediments. J. Fish. Res. Bd Can. 30: 1441–1445.Google Scholar
  59. Stumm, W. & J. J. Morgan, 1981. Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters, 2nd ed. Wiley Interscience, New York.Google Scholar
  60. Tessenow, U. & Y. Baynes, 1975. Redox-dependent accumulation of Fe and Mn in a littoral sediment supporting Isoetes lacustris L. Naturwissenschaften 62: 342–343.CrossRefGoogle Scholar
  61. Weiss, H. V. & A. S. Naidu, 1986. 210Pb flux in an arctic coastal region. Arctic 39: 59–64.Google Scholar
  62. Welch, H. E. & J. A. Legault, 1986. Precipitation chemistry and chemical limnology of fertilized lakes at Saqvaqjuac, N.W.T. Can. J. Fish. aquat. Aci. 43: 1104–1134.Google Scholar
  63. Welch, H. E. & M. A. Bergmann, 1985. Winter respiration rates of lakes at Saqvaqjuac, N.W.T. Can. J. Fish. aquat. Sci. 42: 521–528.Google Scholar
  64. Whalen, S. C. & V. Alexander, 1986. Seasonal inorganic carbon and nitrogen transport by phytoplankton in an arctic lake. Can. J. Fish. aquat. Sci. 43: 1177–1186.CrossRefGoogle Scholar
  65. Whalen, S. C. & J. C. Cornwell, 1985. Nitrogen, phosphorus and organic carbon cycling in an arctic lake. Can. J. Fish. aquat. Sci. 42: 797–808.Google Scholar
  66. Whalen, S. C., J. C. Cornwell & V. Alexander, 1988. Comparison of chemical and biological N budgets in an arctic lake: implications for phytoplankton production. In E. T. Degens, S. Kempe & A. S. Naidu (eds), Transport of Carbon and Minerals in Major World Rivers, Lakes, and Estuaries. Mitt. Geol. Palaont. Inst. Univ. Hamburg, SCOPE/UNEP, 66: 99–115.Google Scholar
  67. Williams, J. D. H., J. K. Syers, S. S. Shukla, R. F. Harris & D. E. Armstrong, 1971. Levels of inorganic and total phosphorus in lake sediments as related to other sediment parameters. Envir. Sci. Technol. 5: 1113–1120.CrossRefGoogle Scholar
  68. Yeakel, J. D., 1977. Production and control of epilithic periphyton in an arctic lake. M.S. Thesis, Univ. of Cincinnati. 53 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Jeffrey C. Cornwell
    • 1
  • George W. Kipphut
    • 2
  1. 1.Horn Point Environmental LaboratoryUniversity of Maryland CEESCambridgeUSA
  2. 2.Institute of Marine ScienceUniversity of Alaska-FairbanksFairbanksUSA

Personalised recommendations