, Volume 240, Issue 1–3, pp 23–36 | Cite as

The flux of CO2 and CH4 from lakes and rivers in arctic Alaska

  • George W. Kling
  • George W. Kipphut
  • Michael C. Miller


Partial pressures of CO2 and CH4 were measured directly or calculated from pH and alkalinity or DIC measurements for 25 lakes and 4 rivers on the North Slope of Alaska. Nearly all waters were super-saturated with respect to atmospheric pressures of CO2 and CH4. Gas fluxes to the atmosphere ranged from −6.5 to 59.8 mmol m−2 d−1 for CO2 and from 0.08 to 1.02 mmol m−2 d−1 for CH4, and were uncorrelated with latitude or lake morphology. Seasonal trends include a buildup of CO2 and CH4 under ice during winter, and often an increased CO2 flux rate in August due to partial lake turnover. Nutrient fertilization experiments resulted in decreased CO2 release from a lake due to photosynthetic uptake, but no change in CO2 release from a river due to the much faster water renewal time. In lakes and rivers the groundwater input of dissolved CO2 and CH4 is supplemented by in-lake respiration of dissolved and particulate carbon washed in from land. The release of carbon from aquatic systems to the atmosphere averaged 24 g C m−2 y−1, and in coastal areas where up to 50% of the surface area is water, this loss equals frac 1/5 to 1/2 of the net carbon accumulation rates estimated for tundra.

Key words

Alaska arctic carbon budgets methane limnology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelson, P. H., 1989. The Arctic: A key to world climate. Science 243: 873.PubMedGoogle Scholar
  2. Billings, W. D., 1987. Carbon balance of Alaskan tundra and taiga ecosystems: past, present and future. Quat. Sci. Rev. 6: 165–177.Google Scholar
  3. Billings, W. D., J. O. Luken, D. A. Mortensen & K. M. Peterson, 1982. Arctic tundra: A source or sink for atmospheric carbon dioxide in a changing environment? Oecologia 53: 7–11.CrossRefGoogle Scholar
  4. Billings, W. D., K. M. Peterson, J. O. Luken & D. A. Mortensen, 1984. Interaction of increasing atmospheric carbon dioxide and soil nitrogen on the carbon balance of tundra microcosms. Oecologia 65: 26–29.CrossRefGoogle Scholar
  5. Bliss, L. C., O. W. Heal & J. J. Moore, 1981. Tundra ecosystems: A comparative analysis. IBP Handbook 25. Cambridge University Press, Cambridge, 715 pp.Google Scholar
  6. Bolin, B., B. R. Doos, J. Jager & R. A. Warrick, 1986. The greenhouse effect, climate change, and ecosystems. SCOPE 29. John Wiley & Sons, New York, 541 pp.Google Scholar
  7. Bower, P. & D. McCorkle, 1980. Gas exchange, photosynthetic uptake, and carbon budget for a radiocarbon addition to a small enclosure in a stratified lake. Can. J. Fish. aquat. Sci. 37: 464–471.Google Scholar
  8. Broecker, H. C., J. Peterman & W. Siems, 1978. The influence of wind on CO2-exchange in a wind-wave tunnel, including the effects of monolayers. J. Mar. Res. 36: 595–610.Google Scholar
  9. Broecker, W. S. & T.-H. Peng, 1974. Gas exchange rates between air and sea. Tellus 16: 21–35.Google Scholar
  10. Broecker, W. S., T.-H. Peng, G. Mathieu, R. Heslein & T. Torgersen, 1980. Gas exchange rate measurements in natural systems. Radiocarbon 22: 676–683.Google Scholar
  11. Buck, A. L., 1981. New equations for computing vapor pressure and enhancement factor. J. appl. Meteorol. 20: 1527–1532.CrossRefGoogle Scholar
  12. Chapin, F. S., III, P. C. Miller, W. D. Billings & P. I. Coyne, 1980. Carbon and nutrient budgets and their control in coastal tundra. In J. Brown, P. C. Miller, L. L. Tieszen & F. K. Bunnell (eds), An Arctic Ecosystem, the Coastal Tundra at Barrow, Alaska. IBP Handbook 12. Dowden, Hutchinson & Ross, Inc., Stroudsburg: 458–482.Google Scholar
  13. Cornwell, J. C., 1985. Sediment accumulation rates in an Alaskan arctic lake using a modified 210Pb technique. Can. J. Fish. aquat. Sci. 42: 809–814.Google Scholar
  14. Cornwell, J. C. & G. W. Kipphut, 1992. Biogeochemistry of manganese- and iron-rich sediments in Toolik Lake, Alaska. Hydrobiologia 240: 45–59.Google Scholar
  15. Coyne, P. I. & J. J. Kelley, 1974. Carbon dioxide partial pressures in arctic surface waters. Limnol. Oceanogr. 19: 928–938.Google Scholar
  16. Coyne, P. I. & J. J. Kelley, 1975. CO2 exchange over the Alaskan arctic tundra: meteorological assessment by an aerodynamic method. J. appl. Ecol. 12: 587–611.CrossRefGoogle Scholar
  17. Emerson, S., 1975a. Chemically enhanced CO2 gas exchange in a eutrophic lake: A general model. Limnol. Oceanogr. 20: 743–753.Google Scholar
  18. Emerson, S., 1975b. Gas exchange rates in small Canadian shield lakes. Limnol. Oceanogr. 20: 754–761.Google Scholar
  19. Grotch, S. L., 1988. Regional intercomparison of general circulation model predictions and historical climate data. DOE/NBB-0084 TR041. U.S. Department of Energy. Washington. 291 pp.Google Scholar
  20. Hartman, B. & D. E. Hammond, 1984. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay. J. Geophys. Res. 89: 3593–3603.Google Scholar
  21. Heal, O. W., P. W. Flanagan, D. D. French & S. F. MacLean, Jr., 1981. Decomposition and accumulation of organic matter in tundra. In L. C. Bliss, O. W. Heal & J. J. Moore (eds), Tundra Ecosystems: A Comparative Analysis. IBP Handbook 25. Cambridge University Press, Cambridge: 587–633.Google Scholar
  22. Herczeg, A. L., 1987. A stable carbon isotope study of dissolved inorganic carbon cycling in a softwater lake. Biogeochemistry 4: 231–263.CrossRefGoogle Scholar
  23. Hesslein, R. H., W. S. Broecker, P. D. Quay & D. W. Schindler, 1980. Whole-lake radiocarbon experiment in an oligotrophic lake at the Experimental Lakes Area, Northwestern Ontario. Can. J. Fish. aquat. Sci. 37: 454–463.Google Scholar
  24. Hobbie, J. E., 1980. Limnology of tundra ponds. IBP Handbook 13. Dowden, Hutchinson & Ross, Inc., Stroudsburg, 514 pp.Google Scholar
  25. Hoover, T. E. & P. C. Berkshire, 1969. Effects of hydration on carbon dioxide exchange across air-water interface. J. Geophys. Res. 74: 456–474.Google Scholar
  26. Himmelblau, D. M., 1964. Diffusion of dissolved gases in liquids. Chem. Rev. 64: 527–550.CrossRefGoogle Scholar
  27. Jähne, B., K. H. Fischer, J. Imberger, P. Libner, W. Weiss, D. Imboden, U. Lemnin & J. M. Jaquet, 1984. Parametrization of air/lake gas exchange. In W. Brutsaert and G. H. Jirka (eds), Gas Transfer at Water Surfaces. D. Reidel, Dordrecht: 459–466.Google Scholar
  28. Kalff, J. & H. E. Welch, 1974. Phytoplankton production in Char Lake, a natural polar lake, and in Meretta Lake, a polluted polar lake, Cornwallis Island, Northwest Territories. J. Fish. Res. Bd Can. 31: 621–636.Google Scholar
  29. Kanwisher, J., 1963. On the exchange of gases between the atmosphere and the sea. Deep-Sea Res. 10: 195–207.Google Scholar
  30. Kling, G. W., G. W. Kipphut & M. C. Miller, 1991. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251: 298–301.PubMedGoogle Scholar
  31. Kling, G. W., W. J. O'Brien, M. C. Miller & A. E. Hershey, 1992. The biogeochemistry and zoogeography of lakes and rivers in arctic Alaska. Hydrobiologia 240: 1–14.Google Scholar
  32. Lachenbruch, A. H. & B. V. Marshall, 1986. Changing climate: Geothermal evidence from permafrost in the Alaskan arctic. Science 234: 689–696.PubMedGoogle Scholar
  33. Liss, P. S., 1973. Process of gas exchange across an air-water interface. Deep-Sea Res. 20: 221–238.Google Scholar
  34. Livingston, G. P. & L. A. Morrissey, 1990. An interannual comparison of arctic methane emissions: a climatic warming scenario. p. 105 In International Conference on the Role of the Polar Regions in Global Change, June 11–15, 1990, University of Alaska, Fairbanks. 230 pp.Google Scholar
  35. Livingstone, D. A., K. Bryan, Jr. & R. C. Leahy, 1958. Effects of an arctic environment on the origin and development of freshwater lakes. Limnol. Oceanogr. 3: 192–214.CrossRefGoogle Scholar
  36. Merlivat, L. & L. Memery, 1983. Gas exchange across an air-water interface: Experimental results and modeling of bubble contribution to transfer. J. Geophys. Res. 88: 707–724.Google Scholar
  37. Miller, M. C., G. R. Hater, P. Spatt, P. Westlake & D. Yeakel, 1986. Primary production and its control in Toolik Lake, Alaska. Arch. Hydrobiol. Suppl. 74: 97–131.Google Scholar
  38. Nadelhoffer, K. J., A. E. Giblin, G. R. Shaver & J. A. Laundre, 1991. Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72: 242–253.CrossRefGoogle Scholar
  39. Peterson, B. J., J. E. Hobbie, A. E. Hershey, M. A. Lock, T. E. Ford, J. Robie Vestal, V. L. McKinley, M. A. J. Hullar, R. M. Ventullo & G. S. Volk, 1985. Transformation of a tundra river from heterotrophy to autotrophy by addition of phosphorus. Science 229: 1383–1386.PubMedGoogle Scholar
  40. Peterson, B. J., J. E. Hobbie & T. L. Corliss, 1986. Carbon flow in a tundra stream ecosystem. Can. J. Fish. aquat. Sci. 43: 1259–1270.Google Scholar
  41. Plummer, L. N. & E. Busenberg, 1982. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO2-CO2-H2O. Geochim. Cosmochim. Acta 46: 1011–1040.CrossRefGoogle Scholar
  42. Post, W. M., 1990. Report of a workshop on climate feedbacks and the role of peatlands, tundra, and boreal ecosystems in the global carbon cycle. Publ. No. 3289. Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, 32 pp.Google Scholar
  43. Rudd, J. W. M. & R. D. Hamilton, 1978. Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnol. Oceanogr. 23: 337–348.Google Scholar
  44. Schell, D. M., 1983. Carbon-13 and carbon-14 abundances in Alaskan aquatic organisms: delayed production from peat in Arctic food webs. Science 219: 1068–1071.PubMedGoogle Scholar
  45. Schell, D. M. & P. J. Ziemann, 1983. Accumulation of peat carbon in the Alaska arctic coastal plain and its role in biological productivity. pp. 1105–1110. In Permafrost, Fourth International Conference, National Academy Press, Washington. 1524 pp.Google Scholar
  46. Schindler, D. W., G. J. Brunskill, S. Emerson, W. S. Broecker & T.-H. Peng, 1972. Atmospheric carbon dioxide: its role in maintaining phytoplankton standing crops. Science 177: 1192–1194.PubMedGoogle Scholar
  47. Sellmann, P. V., J. Brown, R. I. Lewellen, H. McKim & C. Merry, 1975. The classification and geomorphic implications of thaw lakes of the arctic coastal plain, Alaska. Report 344. U.S. Army Cold Regions Research and Engineering Lab, Hanover, 24 pp.Google Scholar
  48. Shaver, G. R. & F. S. Chapin, III, 1986. Effect of NPK fertilization on production and biomass of Alaskan tussock tundra. Arct. Alp. Res. 18: 261–268.CrossRefGoogle Scholar
  49. Shaver, G. R., K. J. Nadelhoffer & A. E. Giblin, 1992. Biogeochemical diversity and element transport in a heterogeneous landscape, the North Slope of Alaska. In M. Turner & R. Gardner eds, Quantitative Methods in Landscape Ecology. Springer-Verlag. In press.Google Scholar
  50. Smith, S. D. & E. P. Jones, 1985. Evidence for wind-pumping of air-sea gas exchange based on direct measurements of CO2 fluxes. J. Geophys. Res. 90: 869–875.CrossRefGoogle Scholar
  51. Stumm, W. & J. J. Morgan, 1981. Aquatic chemistry, 2nd edition. John Wiley & Sons, New York, 780 pp.Google Scholar
  52. Tans, P. P., I. Y. Fung & T. Takahashi, 1990. Observational constraints on the global atmospheric CO2 budget. Science 247: 1431–1438.PubMedGoogle Scholar
  53. Torgersen, T., G. Mathieu, R. H. Hesslein & W. S. Broecker, 1982. Gas exchange dependency on diffusion coefficient: direct 222Rn and 3He comparisons in a small lake. J. Geophys. Res. 87: 546–556.Google Scholar
  54. Wanninkhof, R., J. R. Ledwell & W. S. Broecker, 1985. Gas exchange-wind speed relation measured with sulfur hexafluoride on a lake. Science 227: 1224–1226.PubMedGoogle Scholar
  55. Wanninkhof, R., J. R. Ledwell & W. S. Broecker, 1987. Gas exchange on Mono Lake and Crowley Lake, California. J. Geophys. Res. 92: 14567–14580.Google Scholar
  56. Wanninkhof, R., P. J. Mulholland & J. W. Elwood, 1990. Gas exchange rates for a first-order stream determined with deliberate and natural tracers. Water Resour. Res. 26: 1621–1630.CrossRefGoogle Scholar
  57. Weiss, R. F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2: 203–215.CrossRefGoogle Scholar
  58. Welch, H. E. & M. A. Bergmann, 1985. Winter respiration of lakes at Saqvaqjuac, N.W.T. Can. J. Fish. aquat. Sci. 42: 521–528.CrossRefGoogle Scholar
  59. Welch, H. E., J. W. M. Rudd & D. W. Schindler, 1980. Methane addition to an Arctic lake in winter. Limnol. Oceanogr. 25: 100–113.Google Scholar
  60. Wetzel, R. G. & G. E. Likens, 1979. Limnological analyses. W. B. Saunders, Philadelphia, 357 pp.Google Scholar
  61. Whalen, S. C. & W. S. Reeburgh, 1990a. Consumption of atmospheric methane by tundra soils. Nature 346: 160–162.CrossRefGoogle Scholar
  62. Whalen, S. C. & W. S. Reeburgh, 1990b. A methane flux transect along the Trans-Alaska pipeline Haul Road. Tellus B42: 237–245.Google Scholar
  63. Wilhelm, E., R. Battino & R. J. Wilcock, 1977. Low-pressure solubility of gases in liquid water. Chem. Rev. 77: 219–262.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • George W. Kling
    • 1
  • George W. Kipphut
    • 2
  • Michael C. Miller
    • 3
  1. 1.Department of BiologyUniversity of MichiganAnn ArborUSA
  2. 2.Institute of Marine ScienceUniversity of AlaskaFairbanksUSA
  3. 3.Department of Biological SciencesUniversity of CincinnatiCincinnatiUSA

Personalised recommendations