International Journal of Fracture

, Volume 16, Issue 2, pp 155–169 | Cite as

Slightly curved or kinked cracks

  • B. Cotterell
  • J.R. Rice


A solution is presented for the elastic stress intensity factors at the tip of a slightly curved or kinked two-dimensional crack. The solution is accurate to first order in the deviation of the crack surface from a straight line and is carried out by perturbation procedures analogous to those of Banichuk [1] and Goldstein and Salganik [2, 3]. Comparison with exact solutions for circular arc cracks and straight cracks with kinks indicates that the first order solution is numerically accurate for considerable deviations from straightness. The solution is applied to fromulate an equation for the path of crack growth, on the assumption that the path is characterized by pure Mode I conditions (i.e., KII=0) at the advancing tip. This method confirms the dependence of the stability, under Mode I loading, of a straight crack path on the sign of the non-singular stress term, representing tensile stress T acting parallel to the crack, in the Irwin-Williams expansion of the crack tip field. The straight path is shown to be stable under Mode I loading for T<0 and unstable for T>0.


Stress Intensity Factor Crack Path Straight Crack Kink Crack Perturbation Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


On présente une solution pour les facteurs d'intensité de contrainte élastique à l'extrémité d'une fissure bi-dimensionnelle légèrement incurvée ou croquée.

La solution est exacte au premier degré pour la déviation à la surface de la fissure à partir d'une ligne droite, et est mise en oeuvre à l'aide de procédures de perturbations analogues à celles de Banichuck, et de Goldstein et Salganik.

Une comparaison avec les solutions exactes dans le cas de fissures en arc de cercle et de fissures droites avec un croquage indique que la solution du premier ordre est numériquement exacte pour des déviations déjà importantes par rapport à une fissure purement droite.

La solution est appliquée à la formulation d'une équation décrivant le parcours de la croissance d'une fissure, en supposant que ce parcours est caractérisé des conditions de Mode I pures (càd. Kh=0) à l'extrémité de la fissure.

Cette méthode confirme la dépendance de la stabilité sous une mise en charge de Mode I d'un parcours d'une fissure droite par rapport aux signes du terme de contrainte non singulière représentant la contrainte de traction agissant parallèlement à la fissure dans un champ de Irwin-Williams décrivant l'expansion à l'extrémité de celle-ci. On montre que le chemin en ligne droite est stable sous une mise en charge de Mode I lorsque T est inférieur à O et instable lorsque T est supérieur à O.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N.V. Banichuk, “Determination of the Form of a Curvilinear Crack by Small Parameter Technique” Izv. An SSR, MTT 7, 2 (1970) 130–7 (in Russian).Google Scholar
  2. [2]
    R.V. Goldstein and R.L. Salganik, “Plane Problem of Curvilinear Cracks in an Elastic Solid”, Izv. An SSR, MIT 7, 3 (1970) 69–82 (in Russian).Google Scholar
  3. [3]
    R.V. Goldstein and R.L. Salganik, International Journal of Fracture 10 (1974) 507–23.Google Scholar
  4. [4]
    F. Erdogan and G.C. Sih, Journal of Basic Engineering 85 (1963) 519–27.Google Scholar
  5. [5]
    J.G. Williams and P.D. Ewing, International Journal of Fracture Mechanics 8 (1972) 441–6.Google Scholar
  6. [6]
    I. Finnie and A. Saich, International Journal of Fracture 9 (1973) RCR 484–6.Google Scholar
  7. [7]
    P.D. Ewing and J.G. Williams, International Journal of Fracture 10 (1974) RCR 135.Google Scholar
  8. [8]
    P.D. Ewing, J.L. Swedlow and J.G. Williams, International Journal of Fracture 12 (1976) 85–93.Google Scholar
  9. [9]
    B. Cotterell, International Journal of Fracture Mechanics 1 (1965) 96–103.Google Scholar
  10. [10]
    M.C. Hussain, S.L. Pu and J. Underwood, “Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II”, in Fracture Analysis, Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II, ASTM Special Technical Publication 560 (1973) 2–28.Google Scholar
  11. [11]
    K. Palaniswamy and W.G. Knauss, “On the Problem of Crack Extension in Brittle Solids Under General Loading”, in Mechanics Today, S. Nemat-Nasser, Editor, Vol. 4, Pergamon Press (1978) 87–148.Google Scholar
  12. [12]
    G.C. Sih, Engineering Fracture Mechanics 5 (1973) 365–77.Google Scholar
  13. [13]
    G.C. Sih, “A Special Theory of Crack Propagation in Mechanics of Fracture, Methods, Analysis and Solutions of Crack Problems”, Noordhoff (1973).Google Scholar
  14. [14]
    G.C. Sih, International Journal of Fracture 10 (1974) 305–21.Google Scholar
  15. [15]
    B.A. Bilby and G.E. Cardew, International Journal of Fracture 11 (1975) RCR 708–12.Google Scholar
  16. [16]
    B.A. Bilby, G.E. Cardew and I.C. Howard, “Stress Intensity Factors at the Tip of Kinked and Forked Cracks”, in Fracture 1977, Vol. 3, University of Waterloo Press (1977) 197.Google Scholar
  17. [17]
    V.V. Dudukelanko and N.B. Romalis, Direction of Crack Growth Under Plane Stress State Conditions, Izv. An SSR, MTT 8 1973 129–36.Google Scholar
  18. [18]
    K.K. Lo, Journal of Applied Mechanics 45 (1978) 797–802.Google Scholar
  19. [19]
    N.I. Muskhelishvili, “Some Basic Problems on the Mathematical Theory of Elasticity”, Noordhoff (1952).Google Scholar
  20. [20]
    G.C. Sih, P.C. Paris and F. Erdogan, Journal of Applied Mechanics 29 (1962) 306.Google Scholar
  21. [21]
    S.N. Chatterjee, International Journal of Solids and Structures 11 (1975) 521–38.Google Scholar
  22. [22]
    H. Kitagawa and R. Yuuki, “Anlaysis of Branched Cracks Under Biaxial Stresses”, in Fracture 1977, Vol. 3, University of Waterloo Press (1977) 201.Google Scholar
  23. [23]
    H. Kitagawa, R. Yuuki and T. Ohira, Engineering Fracture Mechanics 7 (1975) 515–29.Google Scholar
  24. [24]
    V. Vitek, International Journal of Fracture 13 (1977) 481–501.Google Scholar
  25. [25]
    M.L. Williams, Journal of Applied Mechanics 24 (1957) 109–114.Google Scholar
  26. [26]
    B.R. Lawn and T.R. Wilshaw, “Fracture of Brittle Solids”, Cambridge University Press (1975).Google Scholar
  27. [27]
    H.M. Westergaard, Journal of Applied Mechanics 66 (1939) 49.Google Scholar
  28. [28]
    B. Cotterell, International Journal of Fracture 2 (1966) 526–33.Google Scholar
  29. [29]
    J.C. Radon, P.S. Lever and L.E. Culver, “Fracture Toughness of Pmma Under Biaxial Stress”, in Fracture 1977, Vol. 3, University of Waterloo Press (1977) 1113–8.Google Scholar

Copyright information

© Sijthoff & Noordhoff International Publishers 1980

Authors and Affiliations

  • B. Cotterell
    • 1
  • J.R. Rice
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of SydneySydneyAustralia
  2. 2.Division of EngineeringBrown UniversityProvidenceU.S.A.

Personalised recommendations