International Journal of Fracture

, Volume 48, Issue 1, pp 1–22 | Cite as

A framework to correlate a/W ratio effects on elastic-plastic fracture toughness (J c )

  • Robert H. DoddsJr.
  • Ted L. Anderson
  • Mark T. Kirk


Single edge-notched bend (SENB) specimens containing shallow cracks (a/W < 0.2) are commonly employed for fracture testing of ferritic materials in the lower-transition region where extensive plasticity (but no significant ductile crack growth) precedes unstable fracture. Critical J-values J c ) for shallow crack specimens are significantly larger (factor of 2–3) than the J c )-values for corresponding deep crack specimens at identical temperatures. The increase of fracture toughness arises from the loss of constraint that occurs when the gross plastic zones of bending impinge on the otherwise autonomous crack-tip plastic zones. Consequently, SENB specimens with small and large a/W ratios loaded to the same J-value have markedly different crack-tip stresses under large-scale plasticity. Detailed, plane-strain finite-element analyses and a local stress-based criterion for cleavage fracture are combined to establish specimen size requirements (deformation limits) for testing in the transition region which assure a single parameter characterization of the crack-tip stress field. Moreover, these analyses provide a framework to correlate J c )-values with a/W ratio once the deformation limits are exceeded. The correlation procedure is shown to remove the geometry dependence of fracture toughness values for an A36 steel in the transition region across a/W ratios and to reduce the scatter of toughness values for nominally identical specimens.


Fracture Toughness Plastic Zone Cleavage Fracture Deformation Limit Ductile Crack Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.A. Sorem, R.H. Dodds, Jr and S.T. Rolfe, Structural Engineering and Engineering Materials, SL Report 89–1, The University of Kansas Center for Research, Inc. (1989).Google Scholar
  2. 2.
    G.Matsoukas, B.Cotterell and Y.W.Mai, Journal of the Mechanics and Physics of Solids 34 (1986) 499–510.Google Scholar
  3. 3.
    P.M. De Castro, J. Spurrier and P. Hancock, ASTM STP 677, American Society for Testing and Materials (1979) 486–497.Google Scholar
  4. 4.
    J.D.G.Sumpter, International Journal of Pressure Vessel and Piping 10 (1982) 169–180.Google Scholar
  5. 5.
    B.Cotterell, Q.F.Li, D.Z.Zhang and Y.W.Mai, Engineering Fracture Mechanics 21 (1985) 239–244.Google Scholar
  6. 6.
    Q.F.Li, Engineering Fracture Mechanics 22 (1985) 9–15.Google Scholar
  7. 7.
    Q.F.Li, L.Zhou and S.Li, Engineering Fracture Mechanics 23 (1986) 925–928.Google Scholar
  8. 8.
    D.Z.Zhang and H.Wang, Engineering Fracture Mechanics 26 (1987) 247–250.Google Scholar
  9. 9.
    J.D.G.Sumpter, Fatigue and Fracture of Engineering Materials and Structures 10 (1987) 479–493.Google Scholar
  10. 10.
    J.R.Rice, Journal of Applied Mechanics 35 (1968) 379–386.Google Scholar
  11. 11.
    J.R.Rice and M.A.Johnson, in Inelastic Behavior of Solids, M.F.Kanninenet al. (eds.), McGraw-Hill, New York (1970) 641–670.Google Scholar
  12. 12.
    R.O.Ritchie, J.F.Knott and J.R.Rice, Journal of the Mechanics and Physics of Solids 21 (1973) 395–410.Google Scholar
  13. 13.
    T.Lin, A.G.Evans and R.O.Ritchie, Journal of the Mechanics and Physics of Solids 34 (1986) 477–496.Google Scholar
  14. 14.
    J.W.Hutchinson, Journal of the Mechanics and Physics of Solids 16 (1968) 13–31.Google Scholar
  15. 15.
    J.R.Rice and G.F.Rosengren, Journal of the Mechanics and Physics of Solids 16 (1968) 1–12.Google Scholar
  16. 16.
    R.M. McMeeking and D.M. Parks, Elastic-Plastic Fracture, ASTM STP 668, American Society for Testing and Materials (1979) 175–194.Google Scholar
  17. 17.
    C.F.Shih and M.D.German, International Journal of Fracture 17 (1981) 27–43.Google Scholar
  18. 18.
    C.F.Shih, International Journal of Fracture 29 (1985) 73–84.Google Scholar
  19. 19.
    D.M. Parks and Y.Y. Yang, in Analytical, Numerical, and Experimental Aspects of Three Dimensional Fracture Processes, ASME/SES (1988) 19–32.Google Scholar
  20. 20.
    D.M. Parks, in Proceedings, EGF Conference on Elastic-Plastic Fracture, Freiburg (1989) to appear.Google Scholar
  21. 21.
    T.L. Anderson and S. Williams, ASTM STP 905, American Society for Testing and Materials (1986) 715–740.Google Scholar
  22. 22.
    T.L.Anderson and D.Stienstra, Journal of Testing and Evaluation 17 (1989) 46–53.Google Scholar
  23. 23.
    W.A. Sorem, R.H. Dodds, Jr and S.T. Rolfe, Nonlinear Fracture Mechanics: Volume II-Elastic-Plastic Fracture, ASTM STP 995, American Society for Testing and Materials (1989) 470–494.Google Scholar
  24. 24.
    C.F. Shih, Brown University Report, MRL E-147.Google Scholar
  25. 25.
    C.F.Shih, Journal of the Mechanics and Physics of Solids 29 (1981) 305–326.Google Scholar
  26. 26.
    J.R.Rice and D.M.Tracey, in Numerical and Computer Methods in Structural Mechanics, S.J.Fenveset al. (eds.), Academic Press, New York (1968) 585–623.Google Scholar
  27. 27.
    R.M.McMeeking, Journal of the Mechanics and Physics of Solids 25 (1977) 357–381.Google Scholar
  28. 28.
    T.L. Anderson and R.H. Dodds, Jr., submitted to Journal of Testing and Evaluation.Google Scholar
  29. 29.
    H.G.DeLorenzi and C.F.Shih, International Journal of Fracture 21 (1983) 195–220.Google Scholar
  30. 30.
    R.H., Dodds Jr., International Journal of Fracture 19 (1982) R75–R82.Google Scholar
  31. 31.
    J.Barlow, International Journal for Numerical Methods in Engineering 10 (1976) 243–251.Google Scholar
  32. 32.
    F.Z.Li, C.F.Shih and A.Needleman, Engineering Fracture Mechanics 21 (1985) 405–421.Google Scholar
  33. 33.
    C.F.Shih, B.Moran and T.Nakamura, International Journal of Fracture 30 (1986) 79–102.Google Scholar
  34. 34.
    PATRAN User's Manual, Release 2.3. PDA Engineering, Inc., Costa Mesa, California (1989).Google Scholar
  35. 35.
    R.H.Dodds and L.A.Lopez, International Journal for Engineering with Computers 13 (1985) 18–26.Google Scholar
  36. 36.
    J.R. Haigh and C.E. Richards, CEGB Report RD/L/M461 (1974).Google Scholar
  37. 37.
    R. Narasimhan and A.J. Rosakis, Report SM88–6, California Institute of Technology, Division of Engineering and Applied Science, Pasadena, California.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Robert H. DoddsJr.
    • 1
  • Ted L. Anderson
    • 2
  • Mark T. Kirk
    • 3
  1. 1.Department of Civil EngineeringUniversity of IllinoisUrbanaUSA
  2. 2.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.David Taylor Research CenterAnnapolisUSA

Personalised recommendations