Advertisement

Hydrobiologia

, Volume 341, Issue 1, pp 1–19 | Cite as

Measuring the responses of macroinvertebrate communities to water pollution: a comparison of multivariate approaches, biotic and diversity indices

  • Yong Cao
  • Anthony W. Bark
  • W. Peter Williams
Article

Abstract

The responses of macroinvertebrate communities to pollution by sewage effluent in the River Trent system (UK) were investigated using a variety of multivariate approaches, biotic indices and diversity indices. It was found that multivariate analyses clearly illuminated the change of community structure along the pollution gradient. CY Dissimilarity Measure (CYD)-based Non-Metric Multidimensional Scaling (NMDS) appeared to perform better than DCA and clustering. Species richness, the BMWP, BMWP-ASPT, the Chandler Score, Chandler-ASPT could detect the effects of major pollution. However, these indices showed varying sensitivity to different ranges of pollution, for example, Chandler-ASPT and BMWP-ASPT are more sensitive to the change in clean/slightly polluted range than in the moderate/very polluted range. The diversity indices were the least informative. The advantages and disadvantages of the various approaches were discussed.

Key words

Biotic indices multivariate analyses macroinvertebrates river pollution community structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archibald, R. E. M., 1972. Diversity in some South African diatom associations and its relation to water quality. Wat. Res. 6: 1229–1238.Google Scholar
  2. Armitage, P. D., D. Moss, J. F. Wright & M. T. Furse, 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running waters. Wat. Res. 17: 333–347.Google Scholar
  3. Balloch, D., C. E. Davies & F. H. Jones, 1976. Biological assessment of water quality in three British rivers: the North Esk (Scotland), the Ivel (England) and the Taf (Wales). Wat. Pollut. Contr. 75: 92–110.Google Scholar
  4. Bargos, T., J. M. Mesanza, I. Basaguren & I. E. Orive, 1990. Assessing river water quality by means of multifactorial methods using macroinvertebrates, a comparative study of main water courses of Biscay. Wat. Res. 24: 1–10.Google Scholar
  5. Barton, D. R., 1992. A comparison of sampling techniques and summary indices for assessment of water quality in the Yamaska River, Quebec, based on benthic macroinvertebrates. Envir. Monit. Assn 21: 225–244.Google Scholar
  6. Beckett, D. C., 1978. Ordination of macroinvertebrate communities in a multistressed river system. In J. H. Thorp & J. W. Gibbons (eds), Energy and Environmental Stress US Department of Energy, CONF-771114, NTIS, US Department of Commerce, Springfield, Virginia: 748–770.Google Scholar
  7. Cairns, J. Jr. & J. R. Pratt, 1993. A history of biological monitoring using benthic macroinvertebrates. In D. M. Rosenberg & V. H. Resh (eds), Freshwater biomonitoring and benthic macroinvertebrates, Chapman & Hall, London and New York: 10–27.Google Scholar
  8. Cairns, J. Jr., P. V. McCormick & B. R. Niederlehner, 1993. A proposed framework for developing indicators of ecosystem health. Hydrobiologia 263: 1–44.Google Scholar
  9. Camargo, J. A., 1992. Temporal and spatial variation in dominance, diversity and biotic indices along a limestone stream receiving a trout farm effluent. Wat. Air Soil Pollut. 63: 343–359.Google Scholar
  10. Camargo, J. A., 1993. Macroinvertebrate surveys as a valuable tool for assessing freshwater quality in the Iberian Peninsula. Envir. Monit. Assn. 24: 71–90.Google Scholar
  11. Cao, Y., 1995. Spatial and temporal changes of macroinvertebrate community structure in two UK lowland river system. Unpublished PhD Thesis, King's College London, UK: 232–266.Google Scholar
  12. Cao, Y., W. P. Williams & A. W. Bark, 1997a Community similarity measure bias in river benthic aufwuchs community analysis. Wat. Envir. Res. (in press).Google Scholar
  13. Cao, Y., W. P. Williams & A. W. Bark, 1997b. Effects of sample size (replicate number) on similarity measures in river benthic aufwuchs community analysis. Wat. Envir. Res. (in press).Google Scholar
  14. Clements, W. H., 1994. Benthic invertebrate community responses to heavy metals in the Upper Arkansas River Basin, Colorado. J. North Am. Benthol. Soc. 13: 30–44.Google Scholar
  15. Clements, W. H., D. S. Cherry & J. Cairns, 1988. The impact of heavy metals on macroinvertebrate communities: a comparison of observatory and experimental results. Can. J. Fish. aquat. Sci. 45: 2017–2025.Google Scholar
  16. Cook, S. E. K., 1976. Quest for an index of community structure sensitive to water pollution. Envir. Pollut. 11: 269–288.Google Scholar
  17. Del Giorgio, P. A., R. J. Vinocur, R. J. Lombardo & G. H. Tell, 1991. Progressive changes in the structure and dynamics of the phytoplankton community along a pollution gradient in a lowland river — a multivariate approach. Hydrobiologia 224: 129–154.Google Scholar
  18. Fleituch, T. M., 1992. Evaluation of the water quality of future tributaries to the planned Dobczyce reservoir (Poland) using macroinvertebrates. Hydrobiologia 237: 103–116.Google Scholar
  19. Gauch, H. G., 1982. Multivariate analysis in community ecology. Cambridge University Press Cambridge.Google Scholar
  20. Girton, C., 1980. Ecological studies on benthic macroinvertebrate communities in relation to their use in river water quality surveillance. Unpublished PhD Thesis, University of Aston, Birmingham, UK.Google Scholar
  21. Goodman, D., 1975. The theory of diversity-stability relationships in ecology. Quat. Rev. Biol. 50: 237–266.Google Scholar
  22. Growns, J. E., B. C. Chessman & P. K. McEvoy, 1995. Rapid assessment of rivers using macroinvertebrates: Case studies in the Nepean River and Blue Mountains, NSW. Aust. J. Ecol. 20: 130–141.Google Scholar
  23. Green, R. H., 1980. Multivariate approaches in ecology: The assessment of ecological similarity. Annu. Rev. Ecol. Syst. 11: 1–14.Google Scholar
  24. Griffiths, R. W., 1991. Environmental quality assessment of the St. Clair River as reflected by the distribution of benthic macroinvertebrates in 1985. Hydrobiologia 219: 143–164.Google Scholar
  25. Hawkes, H. A., 1979. Invertebrates as indicators of river water quality. In A. James & L. Evison (eds), Biological indicators of water quality. Wiley, London: 2.1–2.45.Google Scholar
  26. Hellawell, J. M., 1978. Biological surveillance of rivers, a biological monitoring handbook. Water Research Centre, Medmenham and Stevenage, UK.Google Scholar
  27. Hellawell, J. M., 1986. Biological indicators of freshwater pollution and environmental management. Applied Science Publishers, London: 546 pp.Google Scholar
  28. Hill, M. O., 1979a. TWINSPAN—A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of individuals and attributes. Section of Ecology and Systematics, Cornell University, Ithaca, New York.Google Scholar
  29. Hill, M. O., 1979b. DECORANA — A FORTRAN program for detrended correspondence analysis and reciprocal averaging. Section of Ecology and Systematics, Cornell University, Ithaca, New York.Google Scholar
  30. James, F. C. & C. E. McCulloch, 1990. Multivariate analysis in ecological and systematics: panacea or pandora's box?. Annu. Rev. Ecol. Syst. 21: 129–166.Google Scholar
  31. Jackson, D. A., 1993. Multivariate analysis of benthic invertebrate communities: the implication of choosing particular data standardizations, measures of association, and ordination methods. Hydrobiologia 268: 9–26.Google Scholar
  32. Johnson, R. K., T. Wiederholm & D. M. Rosenberg, 1993. Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macro- -invertebrates. In D. M. Rosenberg & V. H. Resh (eds), Freshwater biomonitoring and benthic macroinvertebrates, Chapman & Hall, London: 40–158.Google Scholar
  33. Jongman, R. H., C. J. F. ter Braak & O. F. R. van Tongeren, 1987. Data Analysis in community and landscape ecology: 103. Pudoc Wageningen, The Netherlands.Google Scholar
  34. Joshi, H., S. K. Shishodia, S. N. Kumar, D. K. Saikia, B. P. Nauriyal, R. P. Mathur, P. K. Pande, B. S. Mathur & N. Puri, 1995. Ecosystem studies on upper region of Ganga River, India. Envir. Monit. Assn. 35: 181–206.Google Scholar
  35. Mason, C. F., 1991. Biology of freshwater pollution. Longman Scientific & Technical, London: 233–239.Google Scholar
  36. Metcalfe, J. L., 1989. Biological water quality assessment of running water based on macroinvertebrate communities: history and present status in Europe. Envir. Pollut. 60: 101–139.Google Scholar
  37. Murray-Bligh, A. J., 1987. Ecological studies on benthic macro invertebrate in lowland rivers in relation to water quality. Ph.D. Thesis, Aston University, Birmingham, UK.Google Scholar
  38. Norris, R. H. & A. Georges, 1993. Analysis and interpretation of benthic macro-invertebrate survey. In D. M. Rosenberg & V. H. Resh (eds), Freshwater biomonitoring and benthic macroinvertebrates, Chapman & Hall, New York: 234–286.Google Scholar
  39. Norris, R. H. & K. R. Norris, 1995. The need for biological assessment of water quality: Australian perspective. Aust. J. Ecol. 20: 1–6.Google Scholar
  40. NRA (National Rivers Authority), 1991. The quality of rivers, canals and estuaries in England and Wales. Water Quality Series No. 4, UK.Google Scholar
  41. Pinder, L. C. V. & I. S. Far, 1987a. Biological surveillance of water quality — 2. Temporal and spatial variation in the macroinvertebrate fauna of the River Frome, a Dorset chalk stream. Arch. Hydrobiol. 109: 321–331.Google Scholar
  42. Pinder, L. C. V. & I. S. Far, 1987b. Biological surveillance of water quality. 3. The influence of organic enrichment on the macroinvertebrate fauna of small chalk streams. Arch. Hydrobiol. 109: 619–637.Google Scholar
  43. Pinder, L. C., 1989 Biological surveillance of chalk streams. FBA Annual Report 75: 81–92.Google Scholar
  44. Pontasch, K. W. & M. A. Brusven, 1988a. Diversity and community comparison indices: assessment macroinvertebrate recovery following a gasoline spill. Wat. Res. 22: 619–626.Google Scholar
  45. Pontasch, K. W. & M. A. Brusven, 1988b. Macroinvertebrate response to a gasoline spill in Wolf Lodge Creek, Idaho, USA. Arch. Hydrobiol. 113: 41–60.Google Scholar
  46. Pusey, B. J., A. H. Arthington & J. McLean, 1994. The effects of a pulsed application of chlorpyrifos on macroinvertebrate communities in an outdoor artificial stream system. Ecotoxicol. Envir. Safety 27: 221–250.Google Scholar
  47. Rassaro, B. & A. Pietrangelo, 1993. Macroinvertebrate distribution in streams: a comparison of CA ordination with biotic indices. Hydrobiologia 263: 109–118.Google Scholar
  48. Raven, P. J. & J. J. George, 1989. Recovery by riffle macroinvertebrates in a river after a major accident spillage of chlorpyrifos. Envir. Pollut. 24: 54–69.Google Scholar
  49. Resh, V. H., A. P. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace & R. Wissmar, 1988. The role of disturbance theory in stream ecology. J. North Am. Benthol. Soc. 7: 433–455.Google Scholar
  50. Rosenberg, D. M. & V. H. Resh, 1982. The Use of artificial substrates in the study of freshwater benthic macroinvertebrates. In J. Cairns Jr (ed.), Artificial substrates. Ann Arbor Science Pubs., Ann Arbor, MI: 175–235.Google Scholar
  51. Schmitz, A. & R. Nagel, 1995 Influence of 3,4-dichloroaniline (3,4-DCA) on benthic invertebrates in indoor experimental streams. Ecotoxicol. Envir. Safety 30: 63–71.Google Scholar
  52. Sheehan, P. J., 1984. Effects on community and ecosystem structure and dynamics. In P. J. Sheehan, D. R. Miller, G. C. Butler & P. Bourdeau (eds), Effects of pollutants at the ecosystem level, John Wiley & Sons, Chichester, New York: 51–100.Google Scholar
  53. SPSS Inc., 1990. Reference Guide. Chicago, SPSS Inc. 949 pp.Google Scholar
  54. Strivastava, N. K., R. S. Ambasht, R. Kumar, T. I. Shardendu, 1993. Effect of thermal power effluents on the community structure and primary production of phytoplankton. Envir. Int. 19: 79–90.Google Scholar
  55. Ter Braak, C. J. F., 1987. Ordination. In Jongman, R. H., C. J. F. ter Braak & O. F. R. van Tongeren (eds), Data analysis in community and landscape ecology. Pudoc Wageningen: 91–173.Google Scholar
  56. Ter Braak, C. J. F., 1987–1992. CANOCO — A FORTRAN program for canonical community ordination (version 3.10). Microcomputer Power, Ithaca, New York, USA.Google Scholar
  57. Washington, H. G., 1984. Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. Wat. Res. 18: 653–694.Google Scholar
  58. Watton, A. J. & H. A. Hawkes, 1984. The performance of an invertebrate colonisation sampler (S. Auf. U.) in biological surveillance of lowland rivers. In D. Pascoe & R. W. Edwards (eds), Freshwater Biological Monitoring, Pergamon Press, Oxford: 15–25.Google Scholar
  59. Whitehurst, I. T. & B. I. Lindsey, 1990. The impact of organic enrichment on the benthic macroinvertebrate communities of a lowland river. Wat. Res. 24: 625–630.Google Scholar
  60. Winner, R. W., J. S. Van Dyke, N. Caris & M. P. Farrell, 1975. Response of the macroinvertebrate fauna to a copper gradient in an experimental-polluted stream. Verh. int. Theor. angewandte Limnol. 19: 2121–2127.Google Scholar
  61. Wright, I. A., B. C. Chessman, P. G. Fairweather & L. J. Benson, 1995. Measuring the impact of sewage effluent on the macroinvertebrate community of an upland stream: the effect of different levels of taxonomic resolution and quantification. Aust. J. Ecol. 20: 142–149.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Yong Cao
    • 1
  • Anthony W. Bark
    • 1
  • W. Peter Williams
    • 1
  1. 1.Division of Life SciencesKing's College LondonLondonUK

Personalised recommendations