Hydrobiologia

, Volume 194, Issue 1, pp 1–12 | Cite as

The role of seaweed complexity in structuring Hawaiian epiphytal amphipod communities

  • Anthony R. Russo
Article

Abstract

Among Hawaiian marine algal species with different morphologies, seaweed complexity (surface area to biomass ratio) is not a consistent predictor of epiphytal amphipod abundance or number of species. Some seaweed species with relatively high complexity supported low numbers of amphipod individuals and species. Hawaiian epiphytal amphipods are not generally seaweed specific to certain seaweeds, rather they are distributed among many species. The results of this study show that the relationships between complexity of algae and the distribution and abundance of amphipods are neither simple nor direct.

Key words

habitat complexity Amphipoda epifauna macrophytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnard, J. L., 1970. Sublittoral Gammaridea (Amphipoda) of the Hawaiian Islands. Smithsonian Contr. to Zool. 34: 1–285.Google Scholar
  2. Bell, J. D. & M. Westoby, 1986. Importance of local changes in leaf height and density to fish and decapods associated with seagrasses. J. Exp. Mar. Biol. Ecol. 104: 249–274.Google Scholar
  3. Bell, S. S., 1985. Habitat complexity of polychaete tube caps: influence of architecture on the dynamics of a meiobenthic assemblage. J. Mar. Res. 43: 647–671.Google Scholar
  4. Bell, S. S., K. M. Walters & J. C. Kern, 1984. Meiofauna from seagrass habitats: a review for future research. Estuaries. 7: 331–338.Google Scholar
  5. Brenner, D. I., C. Valiela, C. D. Van Raalte & E. J. Carpenter, 1976. Grazing byTalorchestia longicornis on algal mat in a New England salt marsh. J. exp. mar. Biol. Ecol. 22: 161–169.Google Scholar
  6. Caine, E. A., 1978. Habitat adaptations of North American caprellid amphipods. Biol. Bull. 155: 288–296.Google Scholar
  7. Coen, L. D., K. L. Heck & L. G. Abele, 1981. Experiments on competition and predation among shrimps of seagrass meadows. Ecology. 62: 1484–1493.Google Scholar
  8. Coull, B. C. & J. B. J. Wells, 1983. Refuges from fish predation: experiments with phytal meiofauna from the New Zealand rocky intertidal. Ecology 64: 1599–1609.Google Scholar
  9. Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.Google Scholar
  10. D'Antonio, C., 1985. Epiphytes on the rocky intertidal red algaRhodomela larix: negative effects on the host and food for herbivores? J. exp. mar. Biol. Ecol. 86: 197–218.Google Scholar
  11. Dahl, A. L., 1973. Surface area in ecological analysis: quantification of benthic coral-reef algae. Mar. Biol. 23: 239–249.Google Scholar
  12. Edgar, G. J., 1983a. The ecology of southeast Tasmanian phytal animal communities. I. Spatial organization on a local scale. J. exp. mar. Biol. Ecol. 70: 129–157.Google Scholar
  13. Edgar, G. J., 1983b. The ecology of southeast Tasmanian phytal animal communities. IV. Factors affecting the distribution of ampithoid amphipods among algae. J. exp. mar. Biol. Ecol. 70: 205–225.Google Scholar
  14. Fry, B., 1984. Carbon isotope ratios in the importance of algae in FloridaSyringodium seagrass meadows. Mar. Biol. 79: 11–19.Google Scholar
  15. Gunnill, F. C., 1982. Macroalgae as habitat patch islands forScutellidium lamellipes (Copepoda) andAmpithoe tea (Amphipoda). Mar. Biol. 69: 103–116.Google Scholar
  16. Hagerman, L., 1966. The macro and microfauna associated withFucus serratus. Ophelia 3: 1–43.Google Scholar
  17. Harrod, J. & R. Hall, 1962. A method of determining the surface area of various aquatic plants. Hydrobiologia 20: 173–178.Google Scholar
  18. Hay, M. E., J. Duffy & C. A. Pfister, 1987. Chemical defense against different marine herbivores: are amphipods insect equivalents? Ecology 68: 1567–1580.Google Scholar
  19. Heck, K. L. & R. J. Orth, 1980. Seagrass habitats: the roles of habitat complexity, competition, and predation in structuring associated fish and motile invertebrate assemblages In Kennedy V.S.(ed). Estuarine Perspectives, Academic Press: 449–464.Google Scholar
  20. Heck, K. L. & T. A. Thoman, 1981. Experiments on predator-prey interactions in vegetated aquatic habitats. J. exp. mar. Biol. Ecol. 53: 125–134.Google Scholar
  21. Heck, K. L. & G. S. Wetstone, 1977. Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. J. Biogeogr. 4: 135–142.Google Scholar
  22. Hicks, G. R. F., 1977. Species composition and zoogeography of marine phytal harpacticoid copepods from Cook Strait and their contribution to total phytal meiofauna. N. Z. J. Mar. Freshwat. Res. 11: 441–469.Google Scholar
  23. Imada, K., A. Hirayama, S. Nojima & T. Kikuchi, 1981. Microdistribution of phytal amphipods onSargassum seaweeds. Contr. Amakusa Mar. Biol. Lab. 278: 124–137.Google Scholar
  24. Lawton, J. H. & D. R. Strong Jr., 1981. Community patterns and competition on foliverous insects. Am. Nat. 118: 317–338.Google Scholar
  25. Leber, K. M., 1985. The influence of predatory decapods, refuge, and microhabitat selection on seagrass communities. Ecology 66: 1951–1964.Google Scholar
  26. Lewis, F. G. III, 1982. Habitat complexity in a subtropical seagrass meadow: the effects of macrophytes on species composition and abundance in benthic crustacean assemblages. Ph.D. dissertation, Florida State University, Tallahassee, 149 pp.Google Scholar
  27. Lewis, F. G., 1984. The distribution of macrobenthic crustaceans associated withThalassia, Halodule, and bare sand substrata. Mar. Ecol. Prog. Ser. 19: 101–113.Google Scholar
  28. Lewis, F. G., 1987. The crustacean epifauna of seagrass and macroalgae in Apalachee Bay, Florida, U.S.A.. Mar. Biol. 94: 219–231.Google Scholar
  29. Magruder, W. H. & J. W. Hunt, 1979. Seaweeds of Hawaii. Oriental Publ. Honolulu 116 pp.Google Scholar
  30. Nelson, W. G., 1981. Experimental studies of decapod and fish predation on seagrass macrobenthos. Mar. Ecol. Prog. Ser. 5: 141–149.Google Scholar
  31. Nicotri, M. E., 1977. The impact of crustacean herbivores on cultural seaweed populations. Aquaculture 12: 127–236.Google Scholar
  32. Norton, T. & M. R. Benson, 1983. Ecological interactions between the brown seaweedSargassum muticum and its associated fauna. Mar. Biol. 75: 169–177.Google Scholar
  33. O'Gower, A. K. & J. W. Wacasey, 1967. Animal communities associated withThalassia, Diplanthera and sand beds in Biscayne Bay. I. Analysis of communities in relation to water movements. Bull. Mar. Sci. 17: 175–210.Google Scholar
  34. Orth, R. J., K. L. Heck Jr. & J. van Montfrans, 1984. Seagrass faunal communities: a review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries 7: 339–350.Google Scholar
  35. Russo, A. R., 1986. Some measures of habitat complexity and heterogeneity: Relationship to epiphytal amphipod abundance and species richness. Ph.D. dissertation, Florida Institute of Technology, Melbourne, 123 pp.Google Scholar
  36. Russo, A. R., 1987. Role of habitat complexity in mediating predation by the gray damselfishAbudefduf sordidus on epiphytal amphipods. Mar. Ecol. Prog. Ser. 36: 101–105.Google Scholar
  37. Santos, S. L. & J. L. Simon, 1974. Distribution and abundance of polychaetous annelids in a South Florida estuary. Bull. Mar. Sci. 24: 669–689.Google Scholar
  38. Simberloff, D., 1978. Use of rarefaction and related methods in ecology. In Dickson, K. L., Cairns, J., Jr. & Livingston, R. J. (eds). Biol. Data Water Poll. Assessment: Quantitative and Statistical Analyses, ASTM STP 652, Am. Soc. Testing Matrls.: 150–165.Google Scholar
  39. Smith, G., J. Nickels, W. M. Davis, R. Martz, R. Findley & D. White, 1982. Perturbations in the biomass, metabolic activity and community structure of the estuarine detrital microbiota: resource partitioning in amphipod grazing. J. exp. mar. Biol. Ecol. 64: 125–143.Google Scholar
  40. Sokal, R. R. & F. Rohlf, 1981. Biometry, W. H. Freeman & Co.Google Scholar
  41. Steinberg, P., 1984. Algal chemical defense against herbivores: allocation of phenolic compounds in the kelpAlaria marginata. Science 223: 405–407.Google Scholar
  42. Stoner, A. W., 1980a. Perception and choice of substratum by epifaunal amphipods associated with seagrasses. Mar. Ecol. Prog. Ser. 3: 105–111.Google Scholar
  43. Stoner, A. W., 1980b. The role of seagrass biomass in the organization of benthic macrofaunal assemblages. Bull. Mar. Sci. 30: 537–551.Google Scholar
  44. Stoner, A. W., 1983. Distibutional ecology of amphipods and tanidaceans associated with three seagrass species. Crust. Biol. 34: 505–518.Google Scholar
  45. Stoner, A. W. & F. G. Lewis III, 1985. The influence of quantitative and qualitative aspects of habitat complexity in tropical seagrass meadows. J. exp. mar. Biol. Ecol. 94: 19–40.Google Scholar
  46. Virnstein, R. W., W. G. Nelson, F. G. Lewis III & R. Howard, 1984. Latitudinal patterns in seagrass epifauna: Do patterns exist and can they be explained? Estuaries 7: 310–330.Google Scholar
  47. Wieser, W. 1952. Investigations on the microfauna inhabiting seaweeds on rocky coasts. J. Mar. Biol. Assoc. 31: 145–174.Google Scholar
  48. Zimmerman, R., J. Gibson & J. Harrington, 1979. Herbivory and deritivory among gammaridean amphipods from a Florida seagrass community. Mar. Biol. 54: 41–47.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Anthony R. Russo
    • 1
  1. 1.Department of Oceanography and Ocean EngineeringFlorida Institute of TechnologyMelbourneUSA

Personalised recommendations