Plant and Soil

, Volume 129, Issue 1, pp 37–44 | Cite as

Genetic stability in rhizobia in the field

  • A. H. Gibson
  • D. H. Demezas
  • R. R. Gault
  • T. V. Bhuvaneswari
  • J. Brockwell
Article

Abstract

Genetic instability within strains of rhizobia maintained on laboratory media is well recognized, although rarely has the mutation been characterized. Variability within a strain introduced into the field is very difficult to recognise due to poor understanding of naturally-occurring populations of rhizobia. We have examined populations of Rhizobium leguminosarum bv. trifolii from both laboratory cultures and field populations and found significant variation in symbiotic effectiveness within both. In Australia, the only significant introduction of Bradyrhizobium japonicum has been strain CB1809 (=USDA136b). Symbiotic tests on field reisolates obtained by plant entrapment indicate little or no change in symbiotic effectiveness up to nine years after introduction. The RFLP pattern, using the RSα probe (Hahn and Hennecke, 1987a) was unchanged but marked differences in serological characters were observed.

Key words

antigenic characters Bradyrhizobium japonicum genetic variability RFLP analysis Rhizobium leguminosarum bv. trifolii symbiotic effectiveness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brockwell J, Gault R R, Zorin M and Roberts M J 1982 Effects of environmental variables on the competition between inoculum strains and naturalised populations of Rhizobium trifolii for nodulation of Trifolium subterraneum L. and on rhizobia persistence in the soil. Aust. J. Agric. Res. 331, 803–815.Google Scholar
  2. Demezas D H, Reardon T B, Watson J M and Gibson A H 1990 Chromosome and symbiotic plasmid diversity within a naturally-occurring population of clover rhizobia. In The Rhizosphere and Plant Growth. Eds. D LLeister and P BCregan. p 106. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  3. Flores M, Gonzalez V, Pardo M A, Leija A, Martinez E, Romero D, Pinero D, Davila G and Palacios R 1988 Genomic instability in Rhizobium phaseoli. J. Bacteriol. 170, 1191–1196.Google Scholar
  4. Gibson A H 1968 Nodulation failure of Trifolium subterraneum L. cv. Woogenellup (syn. Marrar.). Aust. J. Agric. Res. 19, 907–918.Google Scholar
  5. Gibson A H 1980 Methods for legumes in glasshouses and controlled environment cabinets. In Methods for Evaluating Biological Nitrogen Fixation. Ed. F JBergersen. pp 139–184. Wiley-Interscience, Chichester, UK.Google Scholar
  6. Gibson A H 1987 Evaluation of nitrogen fixation by legumes in the greenhouse and growth chamber. In Symbiotic Nitrogen Fixation Technology. Ed. G HElkan, pp 321–369. Marcel Dekker, New York, USA.Google Scholar
  7. Gibson A H and Brockwell, J 1968 Symbiotic characteristics of subspecies of Trifolium subterraneum L. Aust. J. Agric. Res. 19, 891–905.Google Scholar
  8. Gibson A H, Curnow B C, Bergersen F J, Brockwell J and Robinson A C 1975 Studies of field populations of Rhizobium: effectiveness of strains of Rhizobium trifolii associated with Trifolium subterraneum L. pastures in south-eastern Australia. Soil Biol. Biochem. 7, 95–102.Google Scholar
  9. Gibson A H, Date R A, Ireland J A and Brockwell J 1976 A comparison of competitiveness and persistence amongst five strains of Rhizobium trifolii. Soil Biol. Biochem. 8, 395–401.Google Scholar
  10. Gibson A H, Dudman W F, Weaver R W, Horton J C and Anderson I C 1971 Variation within serogroup 123 of Rhizobium japonicum. In Biological Nitrogen Fixation in Natural and Ecological Habitats. Eds. E GMulder and T ALie. pp 33–37. Martinus Nijhoff, The Hague, Netherlands.Google Scholar
  11. Hahn M and Hennecke H 1987a Conservation of a symbiotic DNA region in soybean root nodule bacteria. Appl. Environ. Microbiol. 53, 2252–2255.Google Scholar
  12. Hahn M and Hennecke H 1987b Mapping of a Brady-rhizobium japonicum DNA region carrying genes for symbiosis and an asymmetric accumulation of reiterated sequences. Appl. Environ. Microbiol. 53, 2247–2252.Google Scholar
  13. Herridge D F and Roughley R J 1975 Variation in colony characteristics and symbiotic effectiveness of Rhizobium. J. Appl. Bacteriol. 38, 19–27.Google Scholar
  14. Hodgson A L M and Roberts W P 1983 DNA colony hybridization to identify Rhizobium strains. J. Gen. Microbiol. 129, 207–212.Google Scholar
  15. Kuykendall L D and Elkan G H 1976 Rhizobium japonicum derivatives differing in nitrogen-fixing efficiency and carbohydrate utilisation. Appl. Environ. Microbiol. 32, 511–519.Google Scholar
  16. Labandera C A and Vincent J M 1975 Loss of symbiotic capacity in commercially useful strains of Rhizobium trifolii. J. Appl. Bacteriol. 39, 209–211.Google Scholar
  17. Mathis J N, Barbour W M, Miller T B, Israel D W and Elkan G H 1986 Characterisation of a mannitol-utilizing, nitrogen-fixing Bradyrhizobium japonicum USDA 110 derivative. Appl. Environ. Microbiol. 52, 81–85.Google Scholar
  18. Pankhurst C E 1977 Symbiotic effectiveness of antibiotic resistant mutants of fast- and slow-growing strains of Rhizobium nodulating Lotus species. Can. J. Microbiol. 23, 1026–1033.Google Scholar
  19. Roughley R J 1976 The production of high quality inoculants and their contribution to legume yield. In Symbiotic Nitrogen Fixation in Plants. Ed. P SNutman. pp 125–136. Cambridge University Press, Cambridge, UK.Google Scholar
  20. Sadowsky M J, Tully R E, Cregan P B and Keyser H H 1987 Genetic diversity in Bradyrhizobium japonicum serogroup 123 and its relation to genotype-specific nodulation of soybean. Appl. Environ. Microbiol. 53, 2624–2630.Google Scholar
  21. Schmidt E L, Zidwick M J and Abebe H M 1986 Bradyrhizobium japonicum serocluster 123 and diversity among member isolates. Appl. Environ. Microbiol. 51, 1212–1215.Google Scholar
  22. Schofield P R, Gibson A H, Dudman W F and Watson J M 1987 Evidence for genetic exchange and recombination of Rhizobium symbiotic plasmids in a soil population. Appl. Environ. Microbiol. 53, 2942–2947.Google Scholar
  23. Schwinghamer E A and Dudman W F 1980 Methods of identifying strains of diazotrophs. In Methods for Evaluating Biological Nitrogen Fixation. Ed. F JBergersen. pp 337–365. Wiley-Interscience, Chichester, UK.Google Scholar
  24. Skinner F A, Roughley R J and Chandler M R 1977 Effect of yeast extract concentration on viability and cell distortion in Rhizobium spp. J. Appl. Bacteriol. 43, 287–297.Google Scholar
  25. Soberon-Chavez G, Najera R, Olivera H and Segovia L 1986 Genetic rearrangements of a Rhizobium phaseoli symbiotic plasmid. J. Bacteriol. 167, 487–491.Google Scholar
  26. Sylvester-Bradley R, Thornton P and Jones P 1988 Colony dimorphism in Bradyrhizobium strains. Appl. Environ. Microbiol. 54, 1033–1038.Google Scholar
  27. Turner G L and Gibson A H 1980 Measurement of nitrogen fixation by indirect means. In Methods for Evaluating Biological Nitrogen Fixation. Ed. F JBergersen. pp 111–138. Wiley-Interscience, Chichester, UK.Google Scholar
  28. Watson J M and Schofield P R 1985 Species-specific, symbiotic plasmid-located repeated DNA sequences in Rhizobium trifolii. Mol. Gen. Genet. 199, 279–289.Google Scholar
  29. Weaver R W and Wright S F 1987 Variability in effectiveness of rhizobia during culture and in nodules. Appl. Environ. Microbiol. 53, 2972–2974.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • A. H. Gibson
    • 1
  • D. H. Demezas
    • 1
  • R. R. Gault
    • 1
  • T. V. Bhuvaneswari
    • 1
  • J. Brockwell
    • 1
  1. 1.CSIRO Division of Plant Industry, CanberraCanberraAustralia

Personalised recommendations