Plant and Soil

, Volume 179, Issue 1, pp 131–140 | Cite as

N2-Fixation, nodule efficiency and biomass accumulation after two years in three Chilean legume trees and Tagasaste Chamaecytisus proliferus subsp. palmensis

  • Carlos Ovalle
  • Luis Longeri
  • James Aronson
  • Alfonzo Herrera
  • Julia Avendaño


Initial results of a long-term field experiment are presented for the above and below-ground biomass accumulation after two years, as well as root nodulation, nodule efficiency (g N fixed/g nodules) and biological N2 fixation (using the 15N isotope dilution method) of four N2-fixing tree species (NFTs) grown in the subhumid mediterranean-climate zone of central Chile. Two non-legume tree species, Fraxinus excelsior and Schinus polygamus, were used as reference plants for the isotope dilution calculations.

Over two years, Tagasaste (Chamaecytisus proliferus subsp. palmensis, a Papilionoideae from the Canary Islands), produced 10 to 20 times more biomass than the other three NFTS (Acacia caven, Prosopis alba and P. chilensis); all Mimosoideae native to Chile, and nodulation and nitrogen fixed were an order of magnitude higher as well. At the end of the second year, the percentage of N derived from N2 fixation (%Ndfa) in Tagasate averaged 85.6, equivalent to ca. 49.1 g N fixed per tree. For all four NFTs, however, %Ndfa, nodule efficiency, and total N accumulation varied from one year to the next; caution is thus required in interpreting or predicting NFT performance over the long term, even if Tagasaste can already be considered a highly promising NFT for central Chile.

Key words

Acacia caven agroforestry Chamaecytisus proliferus subsp. palmensis isotope dilution 15nitrogen fixation nodule efficiency Prosopis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen O N and Allen E K 1981 The Leguminosae. University of Wisconsin Press Macmillan, Madison/London.Google Scholar
  2. Aronson J 1992 Evolutionary biology of Acacia caven (Leguminosae, Mimosoideae). Intraspecific variation in fruits and seeds. Ann. Missouri Bot. Gard. 79, 558–569.Google Scholar
  3. Aronson J, Ovalle C and Avendaño J 1992 Early growth rate and nitrogen fixation potential in 44 legume species grown in two soil types in central Chile. For. Ecol. Manage. 47, 225–244.Google Scholar
  4. Aronson J, Floret C, LeFloch E, Ovalle C and Pontanier R 1993, 3 Restoration and rehabilitation of degraded ecosystems. I. A view from the South. Restoration Ecol. 1, 8–17.Google Scholar
  5. Aronson J, Floret C, LeFloc'h E, Ovalle C and Pontanier R 1993b Restoration and rehabilitation of degraded ecosystems. II. Case studies in Chile, Tunisia and Cameroon. Restoration Ecol. 1, 168–187.Google Scholar
  6. Bernhard-Reversat F and Poupon H 1980 Nitrogen cycling in a soil tree system in a Sahelian Savanna. Example of Acacia senegal. In Nitrogen Cycling in West African Ecosystems. Ed. TRosswall. pp 363–369. Martinus Nyhoff, The Hague, the Netherlands.Google Scholar
  7. Danso S K K A, Bowen G D and Sanginga N 1992 Biological nitrogen fixation in trees in agro-ecosystems. Plant and Soil 141, 177–196.Google Scholar
  8. DeFaria S M, Lewis G P, Sprent J I and Sutherland J M 1992 Occurrence of nodulation in the Leguminosae. New Phytol. 111, 607–619.Google Scholar
  9. Döbereiner J, Franco A A and Guzman I 1970 Estirpes de Rhizobium japonicum de excepcional eficiencia. Pesq. Agropec. Bras. 5, 155–161.Google Scholar
  10. Dommergues Y 1987 The role of biological nitrogen fixation in agroforestry. In Agroforestry. A Decade of Development. Eds. H ASteppler and P K RNair. pp 245–271. ICRAF Nairobi, Kenya.Google Scholar
  11. Felger R S 1979 Ancient crops for the 21st century. In New agricultural crops. Ed. G ARitchie. pp 5–20. AAAS Selected Symposium 38. Westview, Boulder, Co, USA.Google Scholar
  12. Felker P F 1981 Uses of tree legumes in semiarid regions. Econ. Bot. 35, 174–186.Google Scholar
  13. Fried M and Middleboe V 1977 Measurement of the amount of nitrogen fixed by a legume crop. Plant and Soil 47, 713–715.Google Scholar
  14. Jenkins M B, R AVirginia and W MJarrell 1987 Rhizobial ecology of the woody legume mesquite (Prosopis alandulosa) in the Sonoran Desert. Appl. Environ. Microbiol. 53, 36–40.Google Scholar
  15. Högberg P 1986 Nitrogen-fixation and nutrient relations in Savanna. woodland trees (Tanzania). J. Appl. Ecol. 23, 675–688.Google Scholar
  16. Izaguirre-Mayoral M L, Carballo O, Flores S, deMallorca M S and Oropeza T 1992 Quantitative analysis of the symbiotic N2-fixation, non-structural carbohydrates and chlorphyll content in sixteen native legume species collected in different savanna sites. Symbiosis 12, 293–312.Google Scholar
  17. Mead D J and Preston C M 1992 Nitrogen fixation in Sitka alder by 15N isotope dilution after eight growing seasons in a lodgepole pine site. Can. J. For. Res. 22, 1192–1194.Google Scholar
  18. National Research Council 1979 Tropical legumes: Resources for the Future. NAS, Washington, DC, USA.Google Scholar
  19. Ndoye I, Gueye I, Danso S K A and Dreyfus B 1995 Nitrogen fixation in Faidherbia albida, Acacia raddiana, Acacia senegal and Acacia seyal estimated using the 15N isotope dilution technique. Plant and Soil 171, 172, 175–80.Google Scholar
  20. Ovalle C 1986 Etude dy Système Ecologique Sylvo-Pastoral à Acacia caven (Mol.) Hook. et Arn: Applications à la gestion des ressources renouvelables dans l'aire climatique méditerranéenne du Chili. Ph.D. USTL, Montpellier, France. 246 p.Google Scholar
  21. Ovalle C and Avendaño J 1987 Interactions de la strate ligneuse avec la strate herbacée dans les formations d'Acacia caven (Mol.) Mol. au Chili. I. Oecol. Plant. 8, 385–404.Google Scholar
  22. Ovalle C and JAvendaño 1988 Interactions de la strate ligneuse avec la strate herbacée dans les formations d'Acacia caven (Mol.) Mol. au Chili II. Oecol. Plant. 9, 113–134.Google Scholar
  23. Ovalle C, Aronson J, DelPozo A and Avendaño J 1990 The Espinal: agroforestry systems of the mediterranean-type climate region of Chile: State of the art and prospects for improvement. Agrofor. Syst. 10, 213–239.Google Scholar
  24. Ovalle C, Aronson J, Avendaño J, Meneses R, Moreno R and Villaflor L 1992 Dryland fodder legume trees, shrubs and associated. rhizobacteria for central Chile. Establishment and preliminary field evaluation. Vol. I, pp 401–404. Proc. IVth International Rangelands Conf. Montpellier, CIRAD, France.Google Scholar
  25. Ovalle C, Aronson J, Alverez H and Avendaño J 1993a Tagasaste: (Chamaecytisus proliferus spp. palmensis), un árbol forrajero leguminoso con potencial para sistemas agrosilvo-pastorales en. Chile mediterráneo. Agric. Técnica (Chile) 53, 264–271.Google Scholar
  26. Ovalle C, Aronson J, Avendaño J, Meneses R and Mereno R 1993b Rehabilitation of degraded ecosystems in subhumid central Chile and its relevance for arid northern Chile. Rev. Chilena Hist. Nat. 66, 291–304.Google Scholar
  27. Ovalle C and DelPozo A (Eds) 1994 La Agricultura del Secano Interior. INIA, Quilamapu, Chillán, Chile. 234 p.Google Scholar
  28. Parrotta J A and Fried M 1994 Application of 15N enrichment methodologies to estimate nitrogen fixation in Casuarina equisetifolia. Can. J. For. Res. 24, 201–207.Google Scholar
  29. Sanginga N, Mulongoy K and Ayanaba A 1989 Nitrogen fixation of field-inoculated Leucaena leucocephala (Lam.) de Wit estimated using the 15N and the difference methods. Plant and Soil 117, 269–274.Google Scholar
  30. Sanginga N, Bowen G D and Danso S K A 1990 Genetic variability in symbiotic nitrogen fixation within and between provenances of two Casuarina species using the 15N-labelling methods. Soil Biol. Biochem. 22, 539–547.Google Scholar
  31. Shearer G, Kohl D H, Virginia R A, Bryan B A, Skeeters J L, Nilsen E T, Sharifi M R and Rundel P W 1983 Estimates of N2-fixation from the natural abundance of 15N in Sonoran Desert Ecosystems. Oecologia 56, 365–373.Google Scholar
  32. Schulze E-D, Gebauer G, Ziegler H and Lange O L 1991 Estimates of nitrogen fixation by trees on an aridity gradient in Namibia. Oecologia 88, 451–455.Google Scholar
  33. Shmida A 1986 Biogeography of the desert floras of the world. In Ecosystems of the World, Vol. 12a. Hot Deserts and Arid Shrublands. Eds. IEvenari, INoy-Meir and AShmida Elsevier, Amsterdam, the Netherlands.Google Scholar
  34. Snook L C 1989 Tagasaste (Tree Lucerne). Chamaecytisus palmensis. A browze shrub which will increase production from grazing animals. Anim. Prod. Aust. 15, 589–592.Google Scholar
  35. Virginia R A, Baird L M, LaFavre J S, Jarrell W M, Byran B A and Shearer G 1984 Nitrogen fixation efficiency, natural 15N abundance, and morphology of mesquite (Prosopis glandulosa) root nodules. Plant and Soil 79, 273–284.Google Scholar
  36. Weaver R W 1986 Measurement of biological dinitrogen fixation in the field. In Field Measurement of Dinitrogen Fixation and Dinitrification. Eds. R DHauck and R WWeaver. pp 1–10. Soil Science Society of America, Madison, WI, USA.Google Scholar
  37. West N E and Skujins J J (Eds) 1978 Nitrogen in desert ecosystems. US/IBP Synthesis Series 9. Dowden, Hutchinson and Ross, Stroudsburg, PA, USA.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Carlos Ovalle
    • 1
  • Luis Longeri
    • 2
  • James Aronson
    • 3
  • Alfonzo Herrera
    • 4
  • Julia Avendaño
    • 5
  1. 1.Instituto de Investigaciones Agropecuarias (INIA)Quilamapu Experimental StationChillánChile
  2. 2.Laboratory of Soil ScienceUniversity of concepciónChillánChile
  3. 3.CNRS/CEFEMontpellierFrance
  4. 4.Laboratory of RhizobiologyUniversity of ConcepciónChillánChile
  5. 5.Cauquenes Experimental SubstationINIACauquenesChile

Personalised recommendations