Plant and Soil

, Volume 181, Issue 1, pp 71–82 | Cite as

Interactions between decomposition of plant residues and nitrogen cycling in soil

  • B. Mary
  • S. Recous
  • D. Darwis
  • D. Robin


The processes of N mineralization and immobilization which can occur in agricultural soils during decomposition of plant residues are briefly reviewed in this paper. Results from different incubation studies have indicated that the amounts of N immobilized can be very important and that the intensity and kinetics of N immobilization and subsequent remineralization depend on the nature of plant residues and the type of decomposers associated. However, most of the available literature on these processes refer to incubations where large amounts of mineral N were present in soil.

Incubations carried out at low mineral N concentrations have shown that the decomposition rate of plant residues is decreased but not stopped. The immobilization intensity, expressed per unit of mineralized C, is reduced and N remineralization is delayed. Nitrogen availability in soil can therefore strongly modify the MIT kinetics (mineralization-immobilization turnover) by a feed-back effect.

The mineralization and immobilization kinetics have been determined in a two-years field experiment in bare soil with or without wheat straw. Mineralization in plots without straw seemed to be realistically predicted by accounting for variations in soil temperature and moisture. Immobilization associated with straw decomposition was clearly shown. It was increased markedly by the addition of mineral N throughout decomposition. It is concluded that mineral N availability is an important factor controlling plant residues decomposition under field conditions. A better prediction of the evolution of mineral N in soil may therefore require description and modelling of the respective localization of both organic matter and mineral N in soil aggregates.

Key words

carbon decomposition immobilization mineralization residues 


  1. Andrén O and Paustian K 1987 Barley straw decomposition in the field: a comparison of models. Ecology 68, 1190–1200.Google Scholar
  2. Andrén O, Steen E and Raghai K 1992 Modelling the effects of moisture on barley straw and root decomposing in the field. Soil Biol. Biochem. 24, 727–736.Google Scholar
  3. Azam F, Haider K and Malik K A 1985 Transformation of 14C labelled plant components in soil in relation to immobilization and remineralization of 15N fertilizer. Plant and Soil 86, 15–25.Google Scholar
  4. Azam F, Simmons F W and Mulvaney R L 1993 Mineralization of N from plant residues and its interaction with native soil N. Soil Biol. Biochem. 25, 1787–1792.Google Scholar
  5. Bakken L R 1986 Microbial growth, assimilation and mineralization of carbon and nitrogen during decomposition of barley straw. Sci. Rep. Agric. Univ. Norway 14, 1–14.Google Scholar
  6. Barak P, Molina J A E, Hadas A and Clapp C E 1990 Mineralization of amino acids and evidence of direct assimilation of organic nitrogen. Soil Sci. Soc. Am. J. 54, 769–774.Google Scholar
  7. Barraclough D 1991 The use of mean pool abundances to interpret 15N tracer experiments. I-Theory. Plant and Soil 131, 89–96.Google Scholar
  8. Bjarnason S 1988 Calculation of gross nitrogen immobilization and mineralization in soil. J. Soil Sci. 39, 393–406.Google Scholar
  9. Bremer E, vanHoutum W and vanKessel C 1991 Carbon dioxide evolution from wheat and lentil residues as affected by grinding, added nitrogen, and the absence of soil. Biol. Fertil. Soils 11, 221–227.Google Scholar
  10. Burns I G 1976 Equations to predict the leaching of nitrate uniformly incorporated to a known depth or uniformly distributed throughout a soil profile. J. Agric. Sci., Camb. 86, 305–313.Google Scholar
  11. Campbell C A, Myers R J K and Weier K L 1981 Potentially mineralizable nitrogen, decomposition rates and their relationship to temperature for five Queensland soils. Aust. J. Soil Res. 19, 323–332.Google Scholar
  12. Cochran V L, Horton K A and Cole C V 1988 An estimation of microbial death rate and limitations of N or C during wheat straw decomposition. Soil Biol. Biochem. 20, 293–298.Google Scholar
  13. Cowling E B and Merrill W 1969 Nitrogen in wood and its role in wood deterioration. Can. J. Bot. 44, 1539–1554.Google Scholar
  14. Darwis S 1993 Effet des modalités de gestion de la paille de blé sur l'évolution du carbone et de l'azote au cours de sa décomposition dans le sol. Thèse de Doctorat, INA-PG, Paris, France. 195 p.Google Scholar
  15. Davidson E A, Hart S C, Shanks C A and Firestone M K 1991 Measuring gross nitrogen mineralization, immobilization and nitrification by 15N isotopic pool dilution in intact soil cores. J. Soil Sci. 42, 335–349.Google Scholar
  16. Dendooven L 1990 Nitrogen mineralization and nitrogen cycling. Ph.D. thesis no 191, KU Leuven, Belgium. 180 p.Google Scholar
  17. Denys D, Muller J C and Mariotti A 1991 Conséquences de l'organisation de l'azote minéral d'un engrais sur la disponibilité pour la plante et sur la lixiviation. In Nitrates, Agriculture, Eau. Ed. R Calvet. pp 189–194. INRA éditions.Google Scholar
  18. Fog K 1988 The effect of added nitrogen on the rate of decomposition of organic matter. Biol. Rev. 63, 433–462.Google Scholar
  19. Fox R H, Myers R J K and Vallis I 1990 The nitrogen mineralization rate of legume residues in soil as influenced by their polyphenol, lignin, and nitrogen contents. Plant and Soil 129, 251–259.Google Scholar
  20. Guiraud G 1984 Contribution du marquage isotopique à l'évaluation des transferts d'azote entre les compartiments organiques et mineraux dans les systèmes sol-plante. Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris VI, France. 335 p.Google Scholar
  21. Hadas A, Sofer M, Molina J A E, Barak P and Clapp C E 1992 Assimilation of nitrogen by soil microbial population: NH4 versus organic N. Soil Biol. Biochem. 24, 137–143.Google Scholar
  22. Hart S C, Nason G E, Myrold D D and Perry D A 1994 Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection. Ecology 75, 880–891.Google Scholar
  23. Hofman G 1988 Nitrogen supply from mineralization of organic matter. Biol. Wastes 26, 315–324.Google Scholar
  24. Houot S and Chaussod R 1991 Rôle de la biomasse microbienne sur la minéralisation-réorganisation de l'azote dans les sols. Compte-rendu Ministère de l'Environnement, 82 p.Google Scholar
  25. Jansson S L and Persson J 1982 Mineralization and immobilization of soil nitrogen. In Nitrogen in Agricultural Soils. Ed. F JStevenson. pp 229–252. ASA Madison, WI, USA.Google Scholar
  26. Jawson M D and Elliott L F 1986 Carbon and nitrogen transformations during wheat straw and root decomposition. Soil Biol. Biochem. 18, 15–22.Google Scholar
  27. Jenkinson D S, Fox R L and Rayner J H 1985 Interactions between fertilizer nitrogen and soil nitrogen-the so-called priming effect. J. Soil Sci. 36, 425–444.Google Scholar
  28. Jensen E S 1994a Dynamics of mature pea residue nitrogen turnover in unplanted soil under field conditions. Soil Biol. Biochem. 26, 455–464.Google Scholar
  29. Jensen E S 1994b Availability of nitrogen in 15N-labelled mature pea residues to subsequent crops in the field. Soil Biol. Biochem. 26, 465–472.Google Scholar
  30. Jensen E S 1994c Mineralization-immobilization of nitrogen in soil amended with low C:N ratio plant residues with different particle sizes. Soil Biol. Biochem. 26, 519–521.Google Scholar
  31. Kirchmann H and Bergqvist R 1989 Carbon and nitrogen mineralization of white clover plants (Trifolium repens) of different age during aerobic incubation with soil. Z. Pflänzenernähr. Bodenkd. 152, 283–288.Google Scholar
  32. Kirkham D and Bartholomew W V 1954 Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci. Soc. Am. Proc. 18, 33–34.Google Scholar
  33. Khanif Y M, VanCleemput O and Baert L 1984 Evaluation of the Burns'model for nitrate movement in wet sandy soils. J. Soil Sci. 35, 511–518.Google Scholar
  34. Knapp E B, Elliott L F and Campbell G S 1983 Carbon, nitrogen and biomass interrelationships during the decomposition of wheat straw: a mechanistic simulation model. Soil Biol. Biochem. 15, 455–461.Google Scholar
  35. Levi M P and Cowling E B 1969 Role of nitrogen in wood deterioration. VII physiological adaptation of wood-destroying and other fungi to substrate deficient in nitrogen. Phytopathology 59, 460–468.Google Scholar
  36. Lueken H L, Hutcheon W L and Paul E A 1962 The influence of the nitrogen on the decomposition of crop residues in the soil. Can. J. Soil Sci. 42, 276–287.Google Scholar
  37. Mary B 1988 Rôle de la biomasse microbienne du sol dans la disponibilité d'azote minéral en conditions de plein champ. Compterendu Ministère de l'Environnement. 95 p.Google Scholar
  38. Mary B, Fresneau C, Morel J L and Mariotti A 1993 C and N cycling during decomposition of root mucilage, roots and glucose in soil. Soil Biol. Biochem. 25, 1005–1014.Google Scholar
  39. Mary B and Recous S 1995 Modélisation des flux d'azote dans les sols. Mesure par traçage isotopique 15N. In Utilisation des isotopes stables pour l'étude du fonctionnement des plantes. Colloques l'INRA 70, 277–297.Google Scholar
  40. Mary B and Rémy J C 1979 Essai d'appréciation de la capacité de minéralisation de l'azote des sols de grande culture. Ann. Agron. 30, 513–527.Google Scholar
  41. Müller M M and Sundmann V 1988 The fate of nitrogen 15N released from different plant materials during decomposition under field conditions. Plant and Soil 105, 133–139.Google Scholar
  42. Myrold DD and Tiedje J M 1986 Simultaneous estimation of several nitrogen cycle rates using 15N: theory and application. Soil Biol. Biochem. 18, 559–568.Google Scholar
  43. Nieder R and Richter J 1986 Einfluß der Strohdüngung auf den Verlauf der N-Mineralization eines Löß Parabraunde-Ap Horizontes in Saülen Brut versuch. Z. Planzenernähr. Bodenkd. 149, 202–210.Google Scholar
  44. Nishio T, Kanamori T and Fujimoto T 1985 Nitrogen transformations in an aerobic soil as determined bu a 15NH4 + dilution technique. Soil Biol. Biochem. 17, 149–154.Google Scholar
  45. Ocio J A, Martinez J and Brookes P C 1991 Contribution of straw-derived N to total microbial biomass N following incorporation of cereal straw to soil. Soil Biol. Biochem. 23, 655–659.Google Scholar
  46. Park D 1976 Carbon and nitrogen levels as factors influencing fungal decomposers. In The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. Eds. Anderson et al. MacFayden. pp 41–59. Blackwell Science Pub., Oxford, UK.Google Scholar
  47. Parker D T 1962 Decomposition in the field of buried and surface-applied cornstalk residue. Soil Sci. Soc. Am. Proc. 26, 559–562.Google Scholar
  48. Paul E A and Juma N G 1981 Mineralization and immobilization of soil nitrogen by microorganisms. Ecol. Bull 33, 179–194.Google Scholar
  49. Paustian K and Schnürer J 1987 Fungal growth response to carbon and nitrogen limitation: application of a model to laboratory and field data. Soil Biol. Biochem. 19, 621–629.Google Scholar
  50. Payne J W 1980 Microorganisms and Nitrogen Sources. J Wiley and Sons, New York, USA.Google Scholar
  51. Powlson D S, Jenkinson D S, Pruden G and Johnston A E 1985 The effect of straw incorporation on the uptake of nitrogen by winter wheat. J. Sci. Food Agric. 36, 26–30.Google Scholar
  52. Recous S 1995 Effet de la température sur la minéralisation d'un résidu végétal (maîs) et de la matière organique d'un sol. In Ecosystèmes naturels et cultivés et changements globaux. Les Dossiers de l'Environnement. INRA, editions 8, 81–85.Google Scholar
  53. Recous S, Machet J M and Mary B 1992 Partitioning of fertilizer-N between soil microflora and crop: comparison of ammonium and nitrate applications. Plant and Soil 144, 101–111.Google Scholar
  54. Recous S, Robin D, Darwis D and Mary B 1995 Soil inorganic N availability: effect on maize residue decomposition. Soil Biol. Biochem. 27, 1529–1538.Google Scholar
  55. Reinertsen S A, Elliott L F, Cochran V L and Campbell G S 1984 The role of available C and N in determining the rate of wheat straw decomposition. Soil Biol. Biochem. 16, 459–464.Google Scholar
  56. Robin D 1994 Effet de la disponibilité de l'azote sur les flux bruts de C and N au cours de la décomposition des résidus végétaux dans le sol. Thèse INA-PG, Paris, France. 201 p.Google Scholar
  57. Schimel J P, Jackson L E and Firestone M K 1989 Spatial and temporal effects on plant microbial competition for inorganic nitrogen in a California annual grassland. Soil Biol. Biochem. 21, 1059–1066.Google Scholar
  58. Schomberg H H, Steiner J L and Unger P W 1994 Decomposition and nitrogen dynamics of crop residues: residue quality and water effects. Soil Sci. Soc. Am. J. 58, 372–381.Google Scholar
  59. Simon G 1960 L'enfouissement des pailles dans le sol. — Etude générale et répercussions sur la microflore du sol. Ann. Agron. 11, 5–54.Google Scholar
  60. Seligman N G, Feigenbaum S, Feinerman D and Benjamin R W 1986 Uptake of nitrogen from high C-to-N ratio, 15N-labeled organic residues by spring wheat grown under semi-arid conditions. Soil Biol. Biochem. 18, 303–307.Google Scholar
  61. Sorensen LH 1981 Carbon-nitrogen relationships during the humification of cellulose in soils containing different amounts of clay. Soil Biol. Biochem. 13, 313–321.Google Scholar
  62. Stanford G, Frere M H and Schwaninger D H 1973 Temperature coefficient of soil nitrogen mineralization. Soil Sci. 115, 321–323.Google Scholar
  63. Stanford G and Smith S J 1972 Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. Proc. 36, 465–472.Google Scholar
  64. Swift M J, Heal O W and Anderson J M 1979 Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications, Oxford, UK.Google Scholar
  65. VanVeen J A, Ladd J N and Amato M 1984 turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with 14C-glucose and 15N-(NH4)2SO4 under different moisture regimes. Soil Biol. Biochem. 17, 747–756.Google Scholar
  66. Wessel W W and Tietema A 1992 Calculating gross N transformation rates of 15N pool dilution experiments with acid forest litter: analytical and numerical approaches. Soil Biol. Biochem. 24, 331–342.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • B. Mary
    • 1
  • S. Recous
    • 1
  • D. Darwis
    • 2
  • D. Robin
    • 3
  1. 1.I.N.R.A.Unité d'AgronomieLaon CedexFrance
  2. 2.Fak. Pertanian UnhaluJl. Layjen parmanKendari-Sul. TenggaraIndonesia
  3. 3.G.P.S.A.Paris La Défense 5France

Personalised recommendations