Advertisement

Plant and Soil

, Volume 137, Issue 2, pp 229–236 | Cite as

The effect of liming on quantity and chemical composition of soil organic matter in a pine forest in Berlin, Germany

  • Bernd Marschner
  • A. Waldemar Wilczynski
Article

Abstract

The study was carried out in a 40-yr old pine plantation on a Cambic Arenosol within the urban area of Berlin. Lime application (6.1 t ha-1) has led to a pH increase in the forest floor from 3.3 to 5.5 within one year and to a strong stimulation of macrofaunal and microbiological activity. Three years after liming, the C:N ratio of the forest floor decreased from 28 to 25 and P, Pb, Zn, Cu and Cd concentrations in organic matter increased significantly. The organic C pool of the forest floor was almost 7 t ha-1 lower in the limed plot which is attributed to increased microbial respiration. In the mineral soil too, C-pools are lower in the limed plot, amounting to 13.2 t ha-1 or 14% less than in the control. C:N ratios have narrowed significantly from 27–29 to 23 in 10–30 cm depth. The humic acid fraction is lower throughout the limed profile while the percentage of fulvic acids has increased significantly below 10 cm. The results point to severe losses of organic matter and to profound changes in its composition. This may be of consequences for site quality and leaching processes.

Key words

forest floor heavy metals humic substances liming sandy soil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldinger E 1986 Wirkungen älterer Kalkungen in Fichten-Tannen Beständen des Buntsandstein-Schwarzwaldes. In IMA-Querschnitsseminar. pp 64–72. Kernforschungsanstalt Karslruhe.Google Scholar
  2. Andersson F and Persson T 1988 Liming as a Measure to Improve Soil and Tree Condition in Areas Affected by Air Pollution. Report No. 3518. Natl. Swed. Environ. Protection Board, Stockholm.Google Scholar
  3. Beyer L and Blume H-P 1990 Eigenschaften und Entstehung der Humuskörper typischer Wald- und Ackerböden Schleswig-Holsteins. Z. Pflanzenernaehr. Bodenk. 153, 61–68.Google Scholar
  4. Blume H-P 1965 Die Charakterisierung von Humuskörpern durch Streu- und Humus-Stoffgruppenanalysen unter Berücksichtigung ihrer morphologischen Eigenschaften. Z. Pflanzenernaehr. Dueng. Bodenkd. 111, 95–113.Google Scholar
  5. Brümmer G and Herms U 1983 Influence of soil reaction and organic matter on the solubility of heavy metals in soils. In Effects of Accumulation of Air Pollutants in Forest Ecosystems. Eds. BUlrich and JPankrath. pp 233–243. D. Reidel, Dordrecht, The Netherlands.Google Scholar
  6. Duchaufour P 1976 Dynamics of organic matter in soils of temperate regions: Its action on pedogenesis. Geoderma 15, 31–40.Google Scholar
  7. Evers F H 1983 Möglichkeiten und Grenzen der Bodenmelioration II. Forstwiss. Forsch. 38, 41–43.Google Scholar
  8. Feger K-H 1989 Projekt ARINUS: Bilanzierung von Stoffumsatz und -austrag nach Neutralsalzdüngung in bewaldeten Wassereinzugsgebieten. Kali Briefe 19, 425–441.Google Scholar
  9. Friedland A J, Johnson A H and Siccama T G 1986 Zinc, copper, nickel and cadmium in the forest floor in the northeastern United States. Water Air Soil Poll. 29, 233–43.Google Scholar
  10. Ivarson K C 1977: Changes in decomposition rate, microbial population and carbohydrate content of an acid peat bog after liming and reclamation. Can. J. Soil Sci. 57, 129–137.Google Scholar
  11. Kögel-Knabner I, Zech W and Hatcher P G 1988 Chemical composition of the organic matter in forest soils: The humus layer. Z. Pflanzenernaehr. Bodenkd. 151, 331–340.Google Scholar
  12. Kratz W, Brose A and Rose A 1991 Der Einfluß von Kalkungsmaßnahmen auf bodenchemische und boden-biologische Prozesse in einem geschädigten Kiefern-Eichenforst in Berlin (Grunewald). Verh. Ges. Ökol. (In press.)Google Scholar
  13. Kononova M M 1966 Soil Organic Matter. Pergamon Press, London. 544 p.Google Scholar
  14. Lamersdorf N 1985 Der Einfluß von Düngungsmaßnahmen auf den Schwermetalloutput in einem Buchen- und einem Fichtenökosystem des Sollings. Allg. Forst. Z. 43/85, 1155–1158.Google Scholar
  15. Lange E and Beese F 1985 Die Reaktion der mikrobiellen Bodenpopulation eines Buchenwaldes auf Kalkungsmaßnahmen. Allg. Forst Z. 43/85, 1166–69.Google Scholar
  16. Marschner B (1990): Elementumsätze in einem Kiefernforstökosystem auf Rostbraunerde unter dem Einfluß einer Kalkung/Düngung. Ber. Forschz. Waldökosysteme 60, 1–192.Google Scholar
  17. Marschner B, Fischer E and Stahr K 1987 Kurzfristige Auswirkungen einer Kalkung/Dungung auf den Element-haushalt einer Rostbraunerde unter Kiefer. Mitt. Deut. Bodenkdl. Ges. 55/I, 381–386.Google Scholar
  18. Marschner B, Stahr K and Renger M 1989a Potential hazards of lime application in a damaged pine forest ecosystem in Berlin, Germany. Water Air Soil Poll. 48, 45–57.Google Scholar
  19. Marschner B, Wilczynski W, Renger M and Stahr K 1989b Veränderungen von Humuszusammensetzung und Bodenchemischen Eigenschaften einer Rostbraunerde nach einer Kalkungsmaßnahme. Mitt. Deut. Bodenkdl. Ges. 59/1, 417–422.Google Scholar
  20. Matzner E, Khanna P K, Meiwes K J and Ulrich B 1985 Effects of fertilization and liming on the chemical soil conditions and element distribution in forest soils. Plant and Soil 87, 405–415.Google Scholar
  21. McGill W B and Cole C V 1981 Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26, 267–286.Google Scholar
  22. Morita H 1975 Polyphenols in the lime water extractives of peat. Soil Sci. 120, 112–116.Google Scholar
  23. Schierl R and Kreutzer K 1989 Dolomitische Kalkung eines Fichtenbestandes auf saurer Parabraunerde: Auswirkungen auf Bodenchemie und Vegetation. Kali Briefe 19, 417–423.Google Scholar
  24. Schnitzer M 1980 Effect of low pH on the chemical structure and reactions of humic substances. In Effects of Acid Precipitation on Terrestrial Ecosystems. Eds. T CHutchinson and MHavas. pp 203–222. Plenum Press, New York.Google Scholar
  25. Ulrich B 1983 A concept of ecosystem stability and of acid deposition as driving force for destabilization. In Effects of Accumulation of Air Pollutants in Forest Ecosystems. Eds. BUlrich and JPankrath. pp 1–29. D. Reidel, Dordrecht, The Netherlands.Google Scholar
  26. Ulrich B 1986 Die Rolle der Bodenversauerung beim Waldsterben: Langfristige Konsequenzen und forstliche Möglichkeiten. Forstwiss. Cbl. 105, 421–35.Google Scholar
  27. Ulrich B, Mayer R and Khanna P K 1980 Chemical changes due to acid precipitation in a loess-derived soil in Central Europe. Soil Sci. 130, 193–99.Google Scholar
  28. Williams S T and Gray T R G 1974 Decomposition of litter on the soil surface. In Biology of Plant Litter Decomposition. Eds. C HDickinson and G J FPugh. pp 611–632. Academic Press, New York.Google Scholar
  29. Zelles L, Stepper K and Zsolnay A 1990 The effect of lime on microbial activity in spruce (Picea abies L.) forests. Biol. Fertil. Soils 9, 78–82.Google Scholar
  30. Zibilske L M and Wagner G H 1982 Bacterial growth and fungal genera distribution in soil amended with sewage sludge containing Cd, Cr, and Cu. Soil Sci. 134, 364–370.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Bernd Marschner
    • 1
  • A. Waldemar Wilczynski
    • 1
  1. 1.Institute of Ecology, Department of Soil ScienceTechnical University BerlinBerlin 10Germany

Personalised recommendations