Advertisement

Plant and Soil

, Volume 171, Issue 2, pp 359–363 | Cite as

Studies of two Frankia strains isolated from Trevoa trinervis Miers

  • Alicia Carrasco
  • James R. Salyards
  • Alison M. Berry
Short Communication

Abstract

The Frankia strains TtI 11 and TtI 12 isolated from T. trinervis Miers were characterized regarding their carbon source utilization, intrinsic antibiotic resistance, infectivity, and effectivity on the original host. Both strains grew on BAP medium supplemented with glucose, maltose, and sucrose, but differed in their ability to use other carbon sources such as propionate, pyruvate, acetate, succinate, citrate, and mannitol.

The isolates were sensitive to five of the twelve antibiotics tested at 1 μg mL−1 concentration: chloramphenicol, tobramycin, eritromycin, streptomycin, and rifampicin. They exhibited a variable degree of resistance at 1 μg mL−1 concentraction to penicillin G, 4-fluorouracil, oleandomycin, and lincomycin.

Both isolates were able to infect and nodulate the original host plant, and thus represent the first reported infective and effective microsymbionts for T. trinervis Miers, a rhamnaceous actinorhizal host. R O D Dixon Section editor

Key words

antibiotic resistance carbon source Frankia Trevoa trinervis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, D and Schwintzer, C 1990 In The Biology of Frankia and Actinorhizal Plants. Eds. C R Schwintzer and J D Tjepkema. pp 1–13. Academic Press Inc. San Diego, CA.Google Scholar
  2. Balboa, O et al. 1988 Protoplasma 147, 143–149.CrossRefGoogle Scholar
  3. Balboa, O 1989 Micr. Electr. Biol. Cel. (ISSN 0326–3142) 13 (1), 85–96.Google Scholar
  4. Carrasco, A et al. 1992 Can. J. Microbiol. 38, 174–180.Google Scholar
  5. Caru, M 1993 Plant and Soil 157, 137–145.Google Scholar
  6. Gauthier, D et al. 1984 Acta Oecol./Oecol. Plant 5, 231–239.Google Scholar
  7. Hoagland D R and Arnon D I 1938 Calif Agric. Exp. St. Circ. 347.Google Scholar
  8. Longeri, L and Abarzua, M 1989 In Nitrogen Fixation with Non-Legumes. Ed. F A Skinner. pp 47–53. Kluwer Academic Publishers, Dordrecht.Google Scholar
  9. Medan, D and Tortosa, R D 1976 Bol. Soc. Argent. Bot. 17, 323–336.Google Scholar
  10. Medan, D and Tortosa, R D 1981 Bol. Soc. Argent. Bot. 20, 71–81.Google Scholar
  11. Murry, M A et al. 1984 Plant and Soil 78, 61–78.CrossRefGoogle Scholar
  12. Navas L E 1976 Universidad de Chile, Santiago, Chile.Google Scholar
  13. Newcomb, W and Wood, S M 1987 Int. Rev. Cytol. 109, 1–88.PubMedGoogle Scholar
  14. Normand, P and Lalonde, M 1986 Plant and Soil 90, 429–453.CrossRefGoogle Scholar
  15. Postgate, J R 1982 In Methods in Microbiology Eds. J R Morris and D W Ribbons. Vol 28, 343–356. Academic Press Inc., London.Google Scholar
  16. Rundel, P W and Neel, J W 1978 Flora 167, 127–132.Google Scholar
  17. Shipton, W A and Burggraaf, A J P 1982 Plant and Soil 69, 149–161.Google Scholar
  18. Silvester, W S et al. 1985 Symbiosis 1, 29–38.Google Scholar
  19. Tisa, L et al. 1983 Can. J. Bot. 61, 2768–2773.Google Scholar
  20. Tjepkema J D and Torrey J G 1979 Preface Bot. Gaz. (Chicago), Suppl. 140.Google Scholar
  21. Torrey, J G 1990 In The Biology of Frankia and Actinorhizal Plants. Eds. C R Schwintzer and J D Tjepkema. pp 83–106. Academic Press Inc. San Diego, CA.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Alicia Carrasco
    • 1
  • James R. Salyards
    • 1
  • Alison M. Berry
    • 1
  1. 1.Department of Environmental HorticultureUniversity of CaliforniaDavisUSA

Personalised recommendations