, 101:195 | Cite as

Chrysophycean cysts: indicators of eutrophication in the recent sediments of Frains Lake, Michigan, U.S.A.

  • Heath J. Carney
  • Craig D. Sandgren


The recent sediments of Frains Lake, Michigan contain a rich and well preserved association of chrysophycean cysts. Forty one forms are revealed by scanning electron microscopy (SEM) and light microscopy (LM). Taxonomic descriptions. and SEM micrographs are provided for the dominant forms. The three dominant taxa throughout the sediments, Cysta minima, C. modica and C. subbavaricum, do not show significant shifts in proportional abundance associated with European settlement and the onset of cultural eutrophication. However, certain subdominant taxa do show clear trends. Density counts indicate a dramatic decline in cyst concentration (by volume and by dry mass) and a sharp increase in absolute accumulation (net annual influx) following settlement.

The Frains Lake profile of chrysophycean cysts is compared to sequences of other North American and European temperate lakes. The utility of chrysophycean cysts as paleoenvironmental indicators is considered on the basis of these results.


Chrysophycea cultural eutrophication paleolimnology resting cyst statospore stratigraphy 


  1. Adam, D. P., 1980. Chrysomonad cysts as paleoenvironmental indicators. In Geological Survey Professional Paper 1175. Washington, D.C. 241 p.Google Scholar
  2. Battarbee, R. W., Cronberg, G. & Lowry, S., 1980. Observations on the occurrence of scales and bristles of Mallomonas spp. (Chrysophyceae) in the micro-laminated sediments of a small lake in Finnish North Karelia. Hydrobiologia 71: 225–232.CrossRefGoogle Scholar
  3. Carney, H. J., 1982. Algal dynamics and trophic interactions in the recent history of Frains Lake, Michigan. Ecology 63: 1814–1826.CrossRefGoogle Scholar
  4. Cronberg, G., 1973. Development of cysts in Mallomonas eoa examined by electron microscopy. Hydrobiologia 43: 29–38.CrossRefGoogle Scholar
  5. Cronberg, G., 1980. Cyst development in different species of Mallomonas (Chrysophyceae) studied by scanning electron microscopy. Arch. Hydrobiol. Suppl. 56: 421–434.Google Scholar
  6. Davis, M. B., 1976. Erosion rates and land-use history in southern Michigan. Envir. Cons. 3: 139–148.CrossRefGoogle Scholar
  7. Davis, M. B., Brubaker, L. B. & Beiswenger, J. M., 1971. Pollen grains in lake sediments: pollen percentages in surface sediments from southern Michigan. Quat. Res. 1: 450–467.CrossRefGoogle Scholar
  8. Elner, J. K. & Happey-Wood, C. M., 1978. Diatom and chrysophycean cyst profiles in sediment cores in two linked but contrasting Welsh lakes. Br. phycol. J. 13: 341–360.Google Scholar
  9. Gritten, M. M., 1977. On the fine structure of some chrysophycean cysts. Hydrobiologia 53: 239–252.CrossRefGoogle Scholar
  10. Huber-Pestalozzi, G., 1941. Das Phytoplankton des Susswassers — Die Binnengewasser, 16, Teil 2, l. Halfte: Chrysophyceen, Farblose Flagellaten, Heteroconten.Google Scholar
  11. Kerfoot, W. C., 1974. Net accumulation rates and the history of cladoceran communities. Ecology 55: 51–61.CrossRefGoogle Scholar
  12. LaZerte, B. D., 1978. The planktonic diatom ecology, internal seiches and hypolimnetic turbulence of Frains Lake, Michigan. Dissertation, University of Michigan, Ann Arbor, Michigan, U.S.A.Google Scholar
  13. Leventhal, E., 1970. The Chrysomonadina. In: Hutchinson, G. E. (ed.) Ianula: an account of the history and development of Lago di Monterosi, Latium, Italy. Trans. Am. Phil. Soc. 60: 123–142.Google Scholar
  14. Mosimann, J. E., 1965. Statistical methods for the pollen analyst. Multinomial and negative multinomial techniques. In: Kummel, B. G. & Raup, D. M. (eds.) Handbook of Paleontological Techniques, pp. 636–673. Freeman, San Francisco.Google Scholar
  15. Moss, B., 1979. Algal and other fossil evidence for major changes in Strumpshaw Broad, Norfolk, England in the last two centuries. Br. phycol. J. 14: 263–283.Google Scholar
  16. Munch, C. S., 1980. Fossil diatoms and scales of Chrysophyceae in the recent history of Hall Lake, Washington. Freshwat. Biol. 10: 61–66.CrossRefGoogle Scholar
  17. Nygaard, G., 1956. Ancient and recent flora of diatoms and Chrysophycea in Lake Gribsø. In: Berg, K. & Petersen, J. C., (ededs.) Studies on the Humic, Acid Lake Gribsø. Folia limnol. scand. 8: 32–93.Google Scholar
  18. Patrick, R. & Reimer, C. W., 1966. The Diatoms of the United States, Vol. 1. Acad. nat. Sci. Philad., Monogr. 13, 688 pp.Google Scholar
  19. Sandgren, C. D., 1980a. An ultrastructural investigation of resting cyst formation in Dinobryon cylindricum Imhof (Chrysophyceae, Chrysophycota). Protistologica 16: 259–275.Google Scholar
  20. Sandgren, C. D., 1980b. Resting cyst formation in selected chrysophyte flagellates: an ultrastructural survey including a proposal for the phylogenetic significance of interspecific variations in the encystment process. Protistologica 16: 289–303.Google Scholar
  21. Sandgren, C. D., 1981. Characteristics of sexual and asexual resting cyst (statospore) formation in Dinobryon cylindricum Imhof. J. Phycol. 17: 199–210.CrossRefGoogle Scholar
  22. Smol, J. P., 1980. Fossil synuracean (Chrysophyceae) scales in lake sediments: a new group of paleoindicators. Can. J. Bot. 58: 458–465.Google Scholar
  23. Tippett, R., 1964. An investigation into the nature of the layering of deep-water sediments in two eastern Ontario lakes. Can. J. Bot. 42: 1693–1709.CrossRefGoogle Scholar

Copyright information

© Dr W. Junk Publishers 1983

Authors and Affiliations

  • Heath J. Carney
    • 1
  • Craig D. Sandgren
    • 2
  1. 1.Great Lakes Research DivisionUniversity of MichiganAnn ArborU.S.A.
  2. 2.Department of BiologyUniversity of TexasArlingtonU.S.A.

Personalised recommendations