, Volume 128, Issue 2, pp 109–118 | Cite as

Characteristics of softwater streams in Rhode Island II. Composition and seasonal dynamics of macroalgal communities

  • Robert G. Sheath
  • JoAnn M. Burkholder


Forty stream segments in Rhode Island, U.S.A., were examined seasonally from June 1979 to March 1982. Thirty-nine species of macroalgae were collected, respresenting 25 genera. The composition of the lotic flora was 54% green algae, 31% red algae, 5% blue-green algae, 5% xanthophytes, 3% chrysophytes and 3% diatoms. The majority of these taxa (85%) were filamentous. From a biweekly examination of five stream segments, macroalgal communities could be grouped according to light regime. Species in unshaded streams exhibited little seasonality, whereas in streams shaded by one or more layers of riparian canopy, maxima in species numbers and abundance occurred during colder seasons. The most widespread and abundant species were the blue-green alga Phormidium retzii, the green alga Draparnaldia acuta, and the diatom Eunotia pectinalis. P. retzii and E. pectinalis were aseasonal annuals, while D. acuta was primarily a winter-spring form. It appears that pH is a major factor affecting broad geographic distribution patterns of stream macroalgae, whereas the light regime established by overhanging canopy is an important factor which influences localized abundance and seasonality of lotic macroalgal communities. Niche pre-emption appears to be a common mode of resource space division among stream macroalgae in Rhode Island. E. pectinalis is the strongly developed dominant in this drainage system.


Rhode Island streams lotic macroalgae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhattacharyya, G. K. & R. A. Johnson, 1977. Statistical concepts and methods. Wiley-Interscience, N.Y.: 1–639.Google Scholar
  2. Blum, J. L., 1959. Algal populations in flowing waters. In C. A. Tyron & T. Hartman (eds), The Ecology of Algae. Spec. Publ. Pymatuning Lab. Fld. Biol. 2: 11–21..Google Scholar
  3. Bourrelly, P., 1970. Les algues blues et rouges, les eugléniens, peridiens at cryptomonadines. N. Boubée & Cie, Paris: 1–512.Google Scholar
  4. Burkholder, J. M. & R. G. Sheath, 1984. The seasonal distribution, abundance and diversity of desmids (Chlorophyta) in a softwater north temperate stream. J. Phycol. 20: 159–172.CrossRefGoogle Scholar
  5. Burkholder, J. M. & R. G. Sheath, 1985. Characteristics of softwater streams in Rhode Island, 1. A comparative analysis of physical and chemical variables. Hydrobiologia 128: 97–108.Google Scholar
  6. Cholnoky, B. J., 1968. Die Ökologie der Diatomeen in Binnengewässern. J. Cramer, Lehre: 1–699.Google Scholar
  7. Colt, L. C. Jr, 1974. Some algae of the Connecticut River, New England, U.S.A. Nova Hedwigia 25: 195–209.Google Scholar
  8. Conover, W. J., 1971. Practical nonparametric statistics. Wiley-Interscience, N.Y.: 1–462.Google Scholar
  9. Dam, van H., G. Suurmond & C. J. F. ter Braak, 1981. Impact of acidification on diatoms and chemistry of Dutch moorland pools. Hydrobiologia 83: 425–429.CrossRefGoogle Scholar
  10. Dillard, G. E., 1966. The seasonal periodicity of Batrachospermum macrosporum Mont. and Audouinella violacea (Kuetz.) Ham. in Turkey Creek, Moore County, North Carolina. J. Elisha Mitchell Soc. 82: 204–207.Google Scholar
  11. Eloranta, P. & S. Kunnas, 1979. The growth and species of the attached algae in a river system in central Finland. Arch. Hydrobiol. 78: 86–101.Google Scholar
  12. Evans, G. C., 1966. Model and measurement in the study of woodland light climates. In R. Bainbridge, G. C. Evans & O. Rackham (eds.), Light as an Ecological Factor. Symp. Br. ecol. Soc., Cambridge, 1965. Wiley-Interscience N.Y.: 53–76.Google Scholar
  13. Flint, L. H., 1970. Freshwater red algae of North America. Vantage Press, N.Y.: 1–110.Google Scholar
  14. Haslam, S. M., 1978. River plants: the macrophytic vegetation of water courses. Cambridge University Press, Cambridge, 1–396.Google Scholar
  15. Huth, K., 1979. Einfluh von Tageslänge und Beleuchtungsstärke auf den Generationswechsel bei Batrachospermum moniliforme. Ber. dt. bot. Ges. 92: 467–472.Google Scholar
  16. Huth, K., 1981. Der Generationswechsel von Lemanea fluviatlis C. Ag. in Kultur. Nova Hedwigia 34: 177–189.Google Scholar
  17. Johansson, C., 1982. Attached algal vegetation in running waters of Jamtland, Sweden. Acta Phytogeog. Suec. 71: 1–82.Google Scholar
  18. Mori, M., 1975. Studies on the genus Batrachospermum in Japan. Jap. J. Bot. 20: 461–484.Google Scholar
  19. Morison, M. O. & R. G. Sheath, 1985. Responses to desiccation stress by Klebsormidium rivulare (Ulotrichales, Chlorophyta) from a Rhode Island stream. Phycologia 24: 129–145.Google Scholar
  20. Moss, B., 1973. The influence of environmental factors in the distribution of freshwater algae. An experimental study, 2. The role of pH and the carbon dioxide-bicarbonate system. J. Ecol. 61: 157–177.Google Scholar
  21. Mueller-Dombois, D. & H. Ellenberg, 1974. Aims and Methods of Vegetation Ecology. Wiley-Interscience N.Y.: 1–547.Google Scholar
  22. Nagata, Y., 1979. Rhizoid differentiation in Spirogyra. III. Intracellular localization of phytochrome. Pl. Physiol. 64: 9–12.Google Scholar
  23. Patrick, R. & C. W. Reimer, 1966. The diatoms of the United States exclusive of Alaska and Hawaii 1. Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. Acad. nat. Sci., Philad.: 1–688..Google Scholar
  24. Pentecost, A., 1982. A quantitative study of calcareous stream and Tintenstriche algae from the Malham district, northern England. Br. Phycol. J. 17: 443–456.Google Scholar
  25. Prescott, G. W., 1962. Algae of the western Great Lakes area. WM. C. Brown Co., Dubuque: 1–977.Google Scholar
  26. Quinn, A. W., 1976. Rhode Island geology for the non-geologist. R. I. Dep. Nat. Resour., Providence: 1–63.Google Scholar
  27. Raven, J. A. & J. Beardall, 1981. Carbon dioxide as the exogenous inorganic carbon source for Batrachospermum and Lemanea. Br. phycol. J. 16: 165–175.Google Scholar
  28. Raven, J. A., J. Beardall & H. Griffiths, 1982. Inorganic C-sources for Lemanea, Cladophora and Ranunculus in a fast-flowing stream: measurements of gas exchange and of carbon isotope ratio and their ecological implications. Oecologia (Berl.) 53: 68–78.CrossRefGoogle Scholar
  29. Rider, D. E. & R. H. Wagner, 1972. The relationship of light, temperature, and current to the seasonal distribution of Batrachospermum (Rhodophyta). J. Phycol. 8: 323–331.Google Scholar
  30. Ruttner, F., 1960. Über die Kohlenstoffaufnahme bei Algen auf Rhodophyceen-Gattung Batrachospermum. Z. Hydrol. 22: 280–291.Google Scholar
  31. Schumacher, G. J. & L. A. Whitford, 1965. Respiration and 32P uptake in various species of freshwater algae as affected by current. J. Phycol. 1: 78–80.Google Scholar
  32. Sheath, R. G., J. A. Hellebust & T. Sawa, 1979. Effects of low light and darkness on structural transformations in plastids of the Rhodophyta. Phycologia 18: 1–12.Google Scholar
  33. Sirodot, S., 1884. Les Batrachospermes. Organisation, fonctions, développement, classification. Libraire de l'Academie de Médicine, Paris: 1–299.Google Scholar
  34. Southwood, T. R. E., 1978. Ecological methods with particular reference to the study of insect populations. 2nd Edn. Chapman & Hall, N.Y.: 1–524.Google Scholar
  35. Sreenivasa, M. R. & H. C. Duthie, 1973. Diatom flora of the Grand River, Ontario, Canada. Hydrobiologia 42: 161–224.Google Scholar
  36. Steinman, A. D. & R. G. Sheath, 1984. Morphological variability of Eunotia pectinalis (Bacillariophyceae) in a softwater Rhode Island stream and in culture. J. Phycol. 20: 266–276.CrossRefGoogle Scholar
  37. Strahler, A. N., 1964. Quantitative analysis of watershed geomorphology. Trans. am. Geophys. Union 38: 913–920.Google Scholar
  38. Stumm, W. & J. J. Morgan, 1981. Aquatic chemistry. An introduction emphasizing chemical equilibria in natural waters. 2nd Edn. Wiley-Interscience N.Y.: 1–780.Google Scholar
  39. Triska, F. J., V. C. Kennedy & R. J. Avanzin, 1983. Effect of simulated canopy cover on regulation of nitrate uptake and primary production by natural periphyton assemblages. In T. D. Fontaine, III & A. M. Bartell (eds.), Dynamics of Lotic Ecosystems. Ann Arbor Science, Ann Arbor: 1–494.Google Scholar
  40. Webber, E. E., 1963. The ecology of some attached algae in Worcester County, Massachusetts. Am. Midl. Nat. 70: 175–186.Google Scholar
  41. Westlake, D. F., 1975. Macrophytes. In B. A. Whitton (ed.), River Ecology. Studies in Ecology, 2. University of California Press, Berkeley: 106–128.Google Scholar
  42. Whitford, L. A. & G. L. Schumacher, 1963. Communities of algae in North Carolina streams, and their seasonal relations. Hydrobiologia 22: 133–195.CrossRefGoogle Scholar
  43. Whitford, L. A., 1973. A manual of freshwater algae. Sparks Press, Raleigh: 1–324.Google Scholar
  44. Whittaker, R. H., 1975. Communities and ecosystems. MacMillan, N.Y.: 87–94.Google Scholar
  45. Whitton, B. A., 1975. Algae, In B. A. Whitton (ed.), River Ecology Studies in Ecology, 2. University of California Press, Berkeley: 81–105.Google Scholar
  46. Wolle, F., 1887. Fresh-water algae of the United States. (Exclusive of the Diatomaceae). Comenius Press, Bethlehem, PA: 1–364.Google Scholar

Copyright information

© Dr W. Junk Publishers 1985

Authors and Affiliations

  • Robert G. Sheath
    • 1
  • JoAnn M. Burkholder
    • 1
  1. 1.Department of BotanyUniversity of Rhode IslandKingstonU.S.A.

Personalised recommendations