Advertisement

Hydrobiologia

, Volume 111, Issue 1, pp 43–48 | Cite as

The uptake, translocation and release of phosphorus by Elodea densa

  • J. O. Gabrielson
  • M. A. Perkins
  • E. B. Welch
Article

Abstract

Short-term (16 h) laboratory studies of 32P uptake by Elodea densa rooted in sediment demonstrated both foliar and root uptake, and that translocation occurred acropetally and basipetally. Root absorption is projected to provide 83–85% of total phosphorus uptake during 12–16 h photoperiod days. Measured foliar uptake and excretion rates suggest that there would be no net leakage of phosphorus into the water by undamaged actively-growing E. densa. Foliar uptake decreased and root uptake increased in the dark relative to rates under light.

Keywords

phosphorus cycling macrophytes absorption sediment phosphorus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Public Health Association, 1971. Standard methods for the examination of water and wastewater, 13 edn., N.Y., 874 pp.Google Scholar
  2. Barko, J. W. & R. M. Smart, 1980. Mobilization of sediment phosphorus by submersed macrophytes. Freshwat. Biol. 10: 229–238.CrossRefGoogle Scholar
  3. Barko, J. W. & R. M. Smart, 1981. Sediment-based nutrition of submersed macrophytes. Aquat. Bot. 10: 339–352.CrossRefGoogle Scholar
  4. Black, C. A., 1965. Methods of soil analysis, 2. Chemical and microbiological properties. Am. Soc. Agron. Inc., Madison, Wisc., 1572 pp.Google Scholar
  5. Bole, J. B. & J. R. Allan, 1978. Uptake of phosphorus from sediment by aquatic plants, Myriophyllum spicatum and Hydrilla verticillata. Wat. Res. 12: 353–358.CrossRefGoogle Scholar
  6. Bristow, J. M. & M. Whitcombe, 1971. The role of roots in the nutrition of aquatic vascular plants. Am. J. Bot. 58: 8–13.CrossRefGoogle Scholar
  7. Carignan, R. & J. Kalff, 1979. Quantification of the sediment phosphorus available to aquatic macrophytes. J. Fish. Res. Board Can. 36: 1002–1005.Google Scholar
  8. Carignan, R. & J. Kalff, 1980. Phosphorus sources for aquatic weeds: water or sediments. Science 207: 987–989.PubMedGoogle Scholar
  9. Chapman, H. D. & P. F. Pratt, 1961. Methods of analysis for soils, plants and waters. Univ. Calif., Div. Agric. Sci. Riverside, Calif., 309 pp.Google Scholar
  10. DeMarte, J. A. & R. T. Hartman, 1974. Studies of absorption of 32P, 59Fe, and 45Ca by water-milfoil (Myriophyllum exalbescens Fernald). Ecology 55: 188–194.CrossRefGoogle Scholar
  11. Gabrielson, J. O., 1978. The role of macrophytes in the phosphorus budget of Long Lake. M.S. thesis, Univ. Wash., Seattle, Wash., 82 pp.Google Scholar
  12. Gerloff, G. C., 1975. Nutritional ecology of nuisance aquatic plants. USEPA ecol. res. ser., 77 pp.Google Scholar
  13. Jacoby, J. M., D. D. Lynch, E. B. Welch & M. A. Perkins, 1982. Internal phosphorus loading in a shallow eutrophic lake. Wat. Res. 16: 911–919.CrossRefGoogle Scholar
  14. Lie, G. B., 1976. Aspects of the ecology and physiology of freshwater macrophytes. Ph.D. Diss., Univ. Minn., 426 pp.Google Scholar
  15. Mahin, D. T. & R. T. Lofberg, 1970. Determination of several isotopes in tissue by wet oxidation. In: E. D. Bransome Jr. (ed.), The Current Status of Liquid Scintillation Counting. Grune & Stratton, N.Y., 394 pp.Google Scholar
  16. McRoy, C. P., R. J. Barsdate & M. Nebert, 1972. Phosphorus cycling in an eelgrass (Zostera marina L.) ecosystem. Limnol. Oceanogr. 17: 58–67.Google Scholar
  17. Perkins, M. A., E. B. Welch & J. O. Gabrielson, 1979. Limnological characteristics of Long Lake, Kitsap County, Washington. In: S. A. Peterson (ed.), Limnological and socioeconomic evaluation of lake restoration projects approaches and preliminary results. US EPA, Corvallis Environ. Res. Lab. Report EPA-600/3–79–005, pp. 96–118.Google Scholar
  18. Reimold, R. J., 1972. The movement of phosphorus through the salt marsh cordgrass, Spartina alterniflora Loisel. Limnol. Oceanogr. 17: 606–611.Google Scholar
  19. Schults, D. W. & K. W. Malueg, 1971. Uptake of radiophosphorus by rooted aquatic plants. In: D. J. Nelson (ed.), Radionuclides in Ecosystems. Proc. 3rd natn. symp. radioecol., Oakridge: 417–424.Google Scholar
  20. Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, Lond., 610 pp.Google Scholar
  21. Twilley, R. R., M. M. Brinson & G. J. Davis, 1977. Phosphorus absorption, translocation and secretion in Nuphar luteum. Limnol. Oceanogr. 22: 1022–1032.CrossRefGoogle Scholar
  22. Vollenweider, R. A., 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters with particular reference to nitrogen and phosphorus as factors of eutrophication. OECD, Paris, 192 pp.Google Scholar
  23. Wallsten, M., 1980. Effects of the growth of Elodea canadensis Mich. in a shallow lake (Lake Tamnaren, Sweden). Dev. Hydrobiol. 3: 139–146.Google Scholar
  24. Welch, E. B., M. A. Perkins, D. Lynch & P. Hufschmidt, 1979. Internal phosphorus related to rooted macrophytes in a shallow lake. In: J. E. Breck, R. T. Prentki & O. L. Loucks (eds.), Aquatic plants, lake management, and ecosystem consequences of lake harvesting. Proc. Conf. Univ. Wis., Madison, WI, 14–16.2.1979: 81–100.Google Scholar
  25. Welsh, R. P. H. & P. Denny, 1979. The translocation of 32p in two submerged aquatic angiosperm species. New Phytol. 82: 645–656.CrossRefGoogle Scholar
  26. Wetzel, R. G., 1975. Limnology. W. B. Saunders Co., Philad., PA. 743 pp.Google Scholar

Copyright information

© Dr W. Junk Publishers 1984

Authors and Affiliations

  • J. O. Gabrielson
    • 1
  • M. A. Perkins
    • 1
  • E. B. Welch
    • 1
  1. 1.Department of Civil Engineering, FX-10, Environmental Engineering and Science ProgramUniversity of WashingtonSeattleU.S.A.

Personalised recommendations