Advertisement

Hydrobiologia

, Volume 277, Issue 3, pp 159–170 | Cite as

Effects of nitrogen, phosphorus and carbon enrichment on planktonic and periphytic algae in a softwater, oligotrophic lake in Florida, USA

  • L. E. Barnese
  • C. L. Schelske
Article

Abstract

The objective of this study was to investigate nutrient limitation of algal abundance in Anderson-Cue Lake, a softwater clear oligotrophic lake in north-central Florida. Nutrient diffusing clay pots and cylindrical enclosures were used in the field to test effects of different combinations of nitrogen, phosphorus, silica, and carbon on algal standing crop and composition of periphytic and planktonic algae, respectively. Effects of nutrient enrichment on periphytic algae were examined in two studies conducted 31 May – 8 July and 10 June – 15 July 1991. Nutrient effects on planktonic algae were examined in one study from 13 June – 1 July 1991. Planktonic and periphytic algal biovolume was significantly higher (p<0.05) when nitrogen and carbon were added in combination than with treatments without nitrogen, carbon, or nitrogen and carbon. Treatments with nitrogen and carbon combined resulted in lower algal diversity and dominance by coccoid green algae andScenedesmus. Results indicate that carbon and nitrogen can be limiting factors to algal growth in Anderson-Cue Lake and possibly other lakes of similar water quality.

Key words

algae nutrient enrichment eutrophication oligotrophic softwater lake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, H. L., 1972. Phytoplankton photosynthesis, micronutrient interactions, and inorganic carbon availability in a softwater Vermont lake. In: G. E. Likens (ed.), Nutrients and eutrophication: the limiting-nutrient controversy. The American Society of Limnology and Oceanography, Inc., Lawrence, Kansas. Limnol. Oceanogr. Special Symposia Volume 1: 63–83.Google Scholar
  2. APHA, 1980. Standard methods for the examination of water and wastewater. American Public Health Association, 15th edition. Washington, D.C. 1134 pp.Google Scholar
  3. Beer, S. & B. Shragge, 1987. Photosynthetic carbon metabolism inEnteromorpha compressa (Chlorophyta). J. Phycol. 23: 580–584.CrossRefGoogle Scholar
  4. Bold, H. C. & M. J. Wynne, 1978. Introduction to the algae. Prentice-Hall, Inc., New Jersey, 706 pp.Google Scholar
  5. Brezonik, P. L., W. H. Morgan, E. E. Shannon & H. D. Putnam, 1969. Eutrophication factors in north central Florida lakes. Publication No. 5, Water Resources Research Center, University of Florida, Gainesville, Florida.Google Scholar
  6. Brezonik, P. L., T. L. Crisman & R. L. Schulze, 1984. Planktonic communities in Florida softwater lakes of varying pH. Can. J. Fish. aquat. Sci. 41: 46–56.CrossRefGoogle Scholar
  7. Brower, J. E. & J. H. Zar, 1977. Field and laboratory methods for general ecology. Wm. C. Brown Company, Dubuque, Iowa, 194 pp.Google Scholar
  8. Canfield, D. E., 1983. Sensitivity of Florida lakes to acidic precipitation. Wat. Resour. Res. 19: 833–839.Google Scholar
  9. Cowell, B. C. & C. J. Dawes, 1991. Nutrient enrichment experiments in three central Florida lakes of different trophic states. Hydrobiologia 220: 217–231.Google Scholar
  10. Deevey, E. S., 1972. Biogeochemistry of lakes: major substances. In G. E. Likens (ed.), Nutrients and eutrophication: the limiting-nutrient controversy. The American Society of Limnology and Oceanography, Inc., Lawrence, Kansas. Limnol. Oceanogr. Special Symposia Volume 1: 14–20.Google Scholar
  11. Fairchild, G. W. & A. C. Everett, 1988. Effects of nutrient (N,P,C) enrichment upon periphyton standing crop, species composition and primary production in an oligotrophic softwater lake. Freshwat. Biol. 19: 57–70.CrossRefGoogle Scholar
  12. Fairchild, G. W. & R. L. Lowe, 1984. Artificial substrates which release nutrients: effects on periphyton and invertebrate succession. Hydrobiologia 114: 29–37.CrossRefGoogle Scholar
  13. Goldman, C. R., 1972. The role of minor nutrients in limiting the productivity of aquatic ecosystems. In G. E. Likens (ed.), Nutrients and eutrophication: the limiting-nutrient controversy. The American Society of Limnology and Oceanography, Inc., Lawrence, Kansas. Limnol. Oceanogr. Special Symposia Volume 1: 21–40.Google Scholar
  14. Happey-Wood, C., 1980. Periodicity of epipelic unicellular Volvocales (Chlorophyceae) in a shallow acid pool. J. Phycol. 16: 116–128.CrossRefGoogle Scholar
  15. Happey-Wood, C. M. & J. Priddle, 1984. The ecology of epipelic algae of five Welsh lakes, with special reference to Volvocalean green flagellates (Chlorophyceae). J. Phycol. 20: 109–124.CrossRefGoogle Scholar
  16. Hutchinson, G. E., 1957. A treatise on limnology, volume 1: geography, physics, and chemistry. John Wiley & Sons, Inc. New York, 1015 p.Google Scholar
  17. King, D. L., 1972. Carbon limitation in sewage lagoons. In G. E. Likens (ed.), Nutrients and eutrophication: the limiting-nutrient controversy. The American Society of Limnology and Oceanography, Inc., Lawrence, Kansas. Limnol. Oceanogr. Special Symposia Volume 1: 98–112.Google Scholar
  18. Lehman, J. T., 1978. Enhanced transport of inorganic carbon into algal cells and its implications for the biological fixation of carbon. J. Phycol. 14: 33–42.Google Scholar
  19. Morton, S. D., Sernau & P. H. Derse, 1972. Natural carbon sources, rates of replenishment, and algal growth. In G. E. Likens (ed.), Nutrients and eutrophication: the limiting-nutrient controversy. The American Society of Limnology and Oceanography, Inc., Lawrence, Kansas. Limnol. Oceanogr. Special Symposia Volume 1: 197–204.Google Scholar
  20. Olsen, Y., G. Knutsen & T. Lien, 1983. Characteristics of phosphorus limitation inChlamydomonas reinhardtii (Chlorophyceae) and its palmelloids. J. Phycol. 19: 313–319.CrossRefGoogle Scholar
  21. Raven, J. A. 1991. Implications of inorganic carbon utilization: ecology, evolution, and geochemistry. Can. J. Bot. 908–924.Google Scholar
  22. Roberts, D. A. & C. W. Boylen, 1988. Patterns of epipelic algal distribution in an acidic Adirondack lake. J. Phycol. 24: 146–152.Google Scholar
  23. Shannon, E. E. & P. L. Brezonik, 1972. Limnological characteristics of north and central Florida lakes. Limnol. Oceanogr. 17: 97–110.CrossRefGoogle Scholar
  24. Schindler, D. W., 1971. Carbon, nitrogen, and phosphorus and the eutrophication of freshwater lakes. J. Phycol. 7: 321–329.CrossRefGoogle Scholar
  25. Schindler, D. W. & E. J. Fee, 1973. Diurnal variation of dissolved inorganic carbon and its use in estimating primary production and CO2 invasion in Lake 227. Can. J. Fish. aquat. Sci. 30: 1501–1510.Google Scholar
  26. Stevenson, R. J., R. Singer, D. A. Roberts & C. W. Boylen, 1985. Patterns of benthic algal abundance with depth, trophic status, and acidity in poorly buffered New Hampshire lakes. Can. J. Fish. aquat. Sci. 42: 1501–1512.Google Scholar
  27. Stumm, W. & J. J. Morgan, 1970. Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. John Wiley and Sons, Inc. New York, 583 pp.Google Scholar
  28. Sültemeyer, D. F., H. P. Fock & D. T. Canvin, 1991. Active uptake of inorganic carbon byChlamydomonas reinhardtii: evidence for simultaneous transport of HCO3 — and CO2 and characterization of active CO2 transport. Can J. Bot. 69: 995–1002.Google Scholar
  29. Suttle, C. A., N. M. Price, P. J. Harrison & P. A. Thompson, 1986. Polymerization of silica in acidic solutions: a note of caution to phycologists. J. Phycol. 22: 234–237.Google Scholar
  30. Talling, J. F., 1976. The depletion of carbon dioxide from lake water by phytoplankton. J. Ecol. 64: 79–121.CrossRefGoogle Scholar
  31. Thomas, G. B., 1972. Calculus and analytic geometry. Addison-Wesley Publishing Company, INc., Reading, Massachusetts, 1034 pp.Google Scholar
  32. Wilkinson, L., 1990. Systat: the system for statistics. Evanston, IL: SYSTAT, Inc. 677 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • L. E. Barnese
    • 1
  • C. L. Schelske
    • 1
  1. 1.Department of Fisheries and Aquatic SciencesUniversity of FloridaGainesvilleUSA

Personalised recommendations