Advertisement

Hydrobiologia

, Volume 243, Issue 1, pp 293–301 | Cite as

Indirect effects of fish community structure on submerged vegetation in shallow, eutrophic lakes: an alternative mechanism

  • Christer Brönmark
  • Stefan E. B. Weisner
Interactions Between Trophic Levels

Abstract

The loss of submerged macrophytes during eutrophication of shallow lakes is a commonly observed phenomenon. The proximate reason for this decline is a reduction of available light due to increasing phytoplankton and/or epiphyton biomass. Here we argue that the ultimate cause for the transition from a macrophyte-dominated state to a phytoplankton-dominated state is a change in fish community structure. A catastrophic disturbance event (e.g. winterkill) acting selectively on piscivores, cascades down food chains, eventually reducing macrophyte growth through shading by epiphyton, an effect that is reinforced by increasing phytoplankton biomass. The transition back from the phytoplankton to the macrophyte state depends on an increase in piscivore standing stock and a reduction of planktivores. A conceptual model of these mechanisms is presented and supported by literature data and preliminary observations from a field experiment.

Key words

Fish community structure vegetation eutrophic lakes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, G., I. Blindow, A. Hargeby & S. Johansson, 1990. Det våras för Krankesjön. Anser 29: 53–62.Google Scholar
  2. Benndorf, J., 1990. Conditions for effective biomanipulation; conclusions derived from whole-lake experiments in Europe. In R. D. Gulati, E. H. R. R. Lammens, M.-L. Meijer & E. van Donk (eds), Biomanipulation – Tool for Water Management. Developments in Hydrobiology 61. Kluwer Academic Publishers, Dordrecht: 187–203. Reprinted from Hydrobiologia 200/201.Google Scholar
  3. Andersson, G., 1981. Fiskars inverkan p⫗A sjöf»el och fågelsjöar. Anser 20: 21–34.Google Scholar
  4. Balls, H., B. Moss & K. Irvine, 1989. The loss of submerged plants with eutrophication. I. Experimental design, water chemistry, aquatic plant and phytoplankton biomass in experiments carried out in ponds in the Norfolk Broadland. Freshwat. Biol. 22: 71–87.Google Scholar
  5. Blindow, I., 1986. Undervattensväxter viktiga i fågelsjöar. Fauna och flora 81: 235–244.Google Scholar
  6. Blindow, I., A. Hargeby, S. Johansson & G. Andersson, 1988. Sjöfågelföda i Tåkern och Krankesjön — stabilitet och förändringar. Vingspegeln 7: 41–46.Google Scholar
  7. Brönmark, C., 1985. Interactions, between epiphytes, macrophytes and herbivores: an experimental approach. Oikos 45: 26–30.Google Scholar
  8. Carpenter, S. R. (ed.), 1988. Complex interactions in lake communities. Springer-Verlag, New York.Google Scholar
  9. Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot. 26: 341–370.Google Scholar
  10. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.Google Scholar
  11. Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He, & C. N. von Ende, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.Google Scholar
  12. Casselman, J. M. & H. H. Harvey, 1975. Selective fish mortality resulting from low winter oxygen. Ver. int. Ver. Limnol. 19: 2418–2429Google Scholar
  13. Chambers, P. A. & J. Kalff, 1985. Depth distribution of biomass of submerged aquatic macrophyte communities in relation to Secchi-depth. Can. J. Fish. aquat. Sci. 42: 70–109Google Scholar
  14. Doudoroff, P. & D. L. Shumway, 1970. Dissolved oxygen requirements of freshwater fishes. FAO Fish. Techn. Paper No 86.Google Scholar
  15. Forsberg, C., 1964. The vegetation changes in Lake Tåkern. Svensk Bot. Tidskr. 58: 44–54.Google Scholar
  16. Grimm, M. P. & J. J. G. M. Backx, 1990. The restoration of shallow eutrophic lakes, and the role of northern pike, aquatic vegetation and nutrient concentration. In R. D. Gulati, E. H. R. R. Lammens, M.-L. Meijer & E. van Donk (eds), Biomanipulation — Tool for Water Management. Developments in Hydrobiology 61. Kluwer Academic Publishers, Dordrecht: 557–566. Reprinted from Hydrobiologia 200/201.Google Scholar
  17. Gulati, R. D., E. H. R. R. Lammens, M.-L. Meijer & E. van Donk (eds), 1990. Biomanipulation — Tool For Water Management. Developments in Hydrobiology 61. Kluwer Academic Publishers, Dordrecht, 628 pp. Reprinted from Hydrobiologia 200/201.Google Scholar
  18. Hargeby, A., 1985. Fiskens överlevnad vid syrebrist vinterid — en fråga om fly eller illa fäkta? Fauna och Flora. 80: 81–92.Google Scholar
  19. Hall, D. J. & T. J. Ehlinger, 1989. Perturbation, planktivory, and pelagic community structure: the consequence of winterkill in a small lake. Can. J. Fish. aquat. Sci. 46: 2203–2209.Google Scholar
  20. Harvey, H. H., 1981. Fish communities of the lakes of the Bruce peninsula. Verh. int. Ver. Limnol. 21: 1222–1230.Google Scholar
  21. Holdway, R. A., R. A. Watson & B. Moss, 1978. Aspects of the ecology of Prymnesium parvum (Haptophyta) and water chemistry in the Norfolk Broads, England. Freshwat. Biol. 8: 295–311.Google Scholar
  22. Hootsmans, M. J. M. & J. E. Veermat, 1985. The effects of periphyton-grazing by three epifaunal species on the growth of Zostera marina L. under experimental conditions. Aquat. Bot. 22: 83–88.Google Scholar
  23. Hough, R. A., M. D. Fornwall, B. J. Negele, R. L. Thompson & D. A. Putt, 1989. Plant community dynamics in a chain of lakes: principal factors in the decline of rooted macrophytes with eutrophication. Hydrobiol. 173: 199–217.Google Scholar
  24. Howard, R. K. & F. T. Short, 1986. Seagrass growth and survivorship under the influence of epiphyte grazers. Aquat. Bot. 24: 287–302.Google Scholar
  25. Irvine, K., B. Moss & H. Balls, 1989. The loss of submerged plants with eutrophication. II. Relationships between fish and zooplankton in a set of experimental ponds, and conclusions. Freshwat. Biol. 22: 89–107.Google Scholar
  26. Johansson, L. & L. Persson, 1986. The fish community of temperate eutrophic lakes. In B. Riemann & M. Søndergaard (eds), Carbon dynamics of eutrophic, temperate lakes. Elsevier Science Publishers, Amsterdam.Google Scholar
  27. Jones, R. C., K. Walti & M. S. Adams, 1983. Phytoplankton as a factor in the decline of the submersed macrophyte Myriophyllum spicatum L. in Lake Wingra, Wisconsin, U.S.A. Hydrobiol. 107: 213–219.Google Scholar
  28. Jupp, B. & D. H. W. Spence, 1977. Limitations on macrophytes in a eutrophic lake, Loch Leven. I. Effects of phytoplankton. J. Ecol. 65: 175–186.Google Scholar
  29. Jupp, B., D. H. W. Spence & R. H. Britton, 1974. The distribution and productivity of submerged macrophytes in Loch Leven. Kinross. Proc. R. Soc. Edinburgh B 74: 195–208.Google Scholar
  30. Kerfoot, W. C., 1987. Cascading effects and indirect pathways. In: Kerfoot, W. C. & Sih, A. (eds), Predation. Direct and indirect impacts on aquatic communities. Univ. Press of New England, Hanover and London.Google Scholar
  31. Kerfoot, W. C. & A. Sih, (eds) 1987. Predation. Direct and indirect impacts on aquatic communities. Univ. Press of New England, Hanover and London.Google Scholar
  32. Leah, R. T., B. Moss & D. E. Forrest, 1980. The role of predation in causing major changes in the limnology of a hyper-eutrophic lake. Int. Rev. ges. Hydrobiol. 65: 223–247.Google Scholar
  33. Lodge, D. M., 1991. Herbivory on freshwater macrophytes. In: Adams, M. S. & Sand-Jensen, K. (eds), Ecology of submerged macrophytes. Elsevier Press (In press).Google Scholar
  34. Lubchenco, J., 1986. Relative importance of competition and predation: early colonization of seaweeds in New England. In: Diamond, J. & Case, T. J. (eds), Community Ecology. Harper and Row, New York.Google Scholar
  35. Menge, B. A. & J. P. Sutherland, 1987. Community regulation: Variation in disturbance, competition, and predation in relation to environmental stress and recruitment. Am. Nat. 130: 730–757.Google Scholar
  36. Mitchell, S. F., 1989. Primary production in a shallow eutrophic lake dominated alternately by phytoplankton and by submerged macrophytes. Aquat. Bot. 33: 101–110.Google Scholar
  37. Moss, B., 1976. The effects of fertilization and fish on community structure and biomass of aquatic macrophytes and epiphytic algal populations. An ecosystem experiment. J. Ecol. 64: 313–342.Google Scholar
  38. Moss, B., 1981. The composition and ecology of periphyton communities in freshwaters. II. Inter-relationships between water chemistry, phytoplankton populations and periphyton populations in a shallow lake and associated experimental reservoirs (‘Lund tubes’). Br. phycol. J. 16: 59–76.Google Scholar
  39. Moss, B., 1989. Water pollution and the management of ecosystems: A case study of science and scientist. In: Grubb, P. J. & J. B. Whittaker (eds), Toward a more exact ecology. Blackwell, Oxford.Google Scholar
  40. Moss, B. & R. T. Leah, 1982. Changes in the ecosystem of a guanotrophic and brackish shallow lake in Eastern England: potential problems in its restoration. Int. Revue ges. Hydrobiol. 67: 625–659.Google Scholar
  41. Mulligan, H. F., 1969. Management of aquatic vascular plants and algae. In: Eutrophication: causes, consequences, correctives. National Academy of Sciences, Washington DC.Google Scholar
  42. Paine, R. T., 1966. Food web complexity and species diversity. Am. Nat. 100: 65–75.Google Scholar
  43. Persson, L., 1983. Food consumption and the significance of detritus and algae to intraspecific competition in roach Rutilus rutilus in a shallow eutrophic lake. Oikos 41: 118–125.Google Scholar
  44. Persson, L., G. Andersson, S. F. Hamrin & L. Johansson, 1988. Predator regulation and primary production along the productivity gradient of temperate lake ecosystems. In: Carpenter, S. R. (ed.), Complex interactions in lake communities. Springer-Verlag, New York.Google Scholar
  45. Phillips, G. L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.Google Scholar
  46. Power, M. E., 1990. Effects of fish in river food webs. Science 250: 811–814.Google Scholar
  47. Rahel, F. J., 1984. Factors structuring fish assemblages along a bog lake successional gradient. Ecology 65: 1276–1289.Google Scholar
  48. Sand-Jensen, K., 1977. Effects of epiphytes on eelgrass photosynthesis. Aquat. Bot. 3: 55–63.Google Scholar
  49. Sand-Jensen, K., 1983. Photosynthetic carbon sources of submerged stream macrophytes. J. Exp. Bot. 34: 198–210.Google Scholar
  50. Sand-Jensen, K. & J. Borum, 1984. Epiphyte shading and its effect on photosynthesis and diel metabolism of Lobelia dortmanna L. during the spring bloom in a Danish lake. Aquat. Bot. 20: 109–119.Google Scholar
  51. Sand-Jensen, K. & M. Søndergaard, 1981. Phytoplankton and epiphyte development and their shading effect on submerged macrophytes in lakes of different nutrient status. Int. Revue Gesam. Hydrobiol. 66: 529–552.Google Scholar
  52. Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. In R. D. Gulati, E. H. R. R. Lammens, M.-L. Meijer & E. van Donk (eds), Biomanipulation — Tool for Water Management. Developments in Hydrobiology 61. Kluwer Academic Publishers, Dordrecht: 475–486. Reprinted from Hydrobiologia 200/201.Google Scholar
  53. Schindler, D. W. & G. W. Comita, 1972. The dependence of primary production upon physical and chemical factors in a small, senescing lake, including the effects of complete winter oxygen depletion. Arch. Hydrobiol. 69: 413–451.Google Scholar
  54. Simpson, P. S. & J. W. Eaton, 1986. Comparative studies of the photosynthesis of the submerged macrophyte Elodea canadensis and the filamentous algae Cladophora glomerata and Spirogyra sp. Aquat. Bot. 24: 1–12.Google Scholar
  55. Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwat. Biol. 14: 371–383.Google Scholar
  56. Stansfield, J., B. Moss & K. Irvine, 1989. The loss of submerged plants with eutrophication. III. Potential role of organochlorine pesticides: a paleoecological study. Freshwat. Biol. 22: 109–132.Google Scholar
  57. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472–486.Google Scholar
  58. Thomas, J. D., 1982. Chemical ecology of the snail hosts schistosomiasis: snail-snail and snail-plant interactions. Malacologia 22: 81–91.Google Scholar
  59. Thomas, J. D., 1987. An evaluation of the interactions between freshwater pulmonate snail hosts of human schistosomes and macrophytes. Phil. Trans. R. Soc. B 315: 75–125.Google Scholar
  60. Tonn, W. M. & J. J. Magnuson, 1982. Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology 63: 1149–1166.Google Scholar
  61. Tonn, W. M., C. A. Paszkowski & I. J. Holopainen, 1989. Responses of crucian carp populations to differential predation pressure in a manipulated pond. Can. J. Zool. 67: 2841–2849.Google Scholar
  62. Weber, L. M. & D. M. Lodge, 1989. Periphytic food and predatory crayfish: relative roles in determining snail distribution. Oecologia 82: 33–39.Google Scholar
  63. Wetzel, R. G., 1975. Limnology. Saunders, Philadelphia.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Christer Brönmark
    • 1
  • Stefan E. B. Weisner
    • 1
  1. 1.Department of EcologyUniversity of Lund, Ecology BuildingLundSweden

Personalised recommendations