Advertisement

Hydrobiologia

, Volume 229, Issue 1, pp 115–123 | Cite as

Dissolved organic carbon in a humic lake: effects on bacterial production and respiration

  • Dag O. Hessen
DOM as an energy source

Abstract

Allochthonous matter was the main source of carbon for pelagic bacteria in a humic lake, accounting for almost 90% of the carbon required to support observed bacterial growth. The estimated contribution from zooplankton excretion was of the same magnitude as direct phytoplankton release, both accounting for 5–7% of bacterial demands for dissolved carbon. Bacteria were an important source of carbon both for heterotrophic phytoplankton and for filter feeding zooplankton species, further stressing the role of humus DOC in overall lake productivity.

The high contribution of allochthonous DOC implies a stoichiometry of dissolved nutrients with a surplus of C relative to P. The high P cell quota of bacteria suggest that under such conditions they are P-limited and act like net consumers of P. Excess C will be disposed of, and bacterial respiration rate will increase following a transition from carbon-limited bacterial growth towards mineral-nutrient-limited growth. Thus the high community respiration and frequent CO2-supersaturation in humic lakes may be caused not only by the absolute supply of organic C, but also by the stoichiometry of the dissolved nutrient pool.

Key words:

DOC humus bacteria production respiration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Bell, W. & E. Sakshaug, 1980. Bacterial utilization of algal extracellular products. 2. A kinetic study of natural populations. Limnol. Oceanogr. 25: 1021–1033.Google Scholar
  2. Bell, R. T., G. M. Ahlgren & I. Ahlgren, 1983. Estimating bacterioplankton production by measuring [3H] thymidine incorporation in a eutrophic Swedish lake. Appl. envir. Microbiol. 45: 1709–1721.Google Scholar
  3. Bell, R. T. & J. Kuparinen, 1984. Assessing phytoplankton and bacterioplankton production during early spring in Lake Erken, Sweden. Appl. envir. Microbiol. 48: 1221–1230.Google Scholar
  4. Brock, T. D. & J. Clyne, 1984. Significance of algal excretory products for growth of epilimnic bacteria. Appl. envir. Microbiol. 47: 731–734.Google Scholar
  5. Cole, J. J., G. E. Likens & D. L. Strayer, 1982. Photosynthetically produced dissolved organic carbon: An important carbon source for planktonic bacteria. Limnol. Oceanogr. 27: 1080–1090.Google Scholar
  6. Coveney, M. F., 1982. Bacterial uptake of photosynthetic carbon from freshwater phytoplankton. Oikos 38: 8–20.Google Scholar
  7. Droop, M. R., 1974. The nutrient status of algal cells in continuous culture. J. mar. biol. Assoc. U.K. 54: 825–855.CrossRefGoogle Scholar
  8. Fuhs, G. W., S. D. Demerle, E. Canelli & M. Chen, 1972. Characterization of phosphorus-limited algae. Am. Soc. Limnol. Oceanogr. Spec. Symp. 1: 113–132.Google Scholar
  9. De Haan, H., 1974. Effect of a fulvic acid fraction on the growth of a Pseudomonas from Tjeukemeer (the Netherlands). Freshwat. Biol. 4: 301–310.CrossRefGoogle Scholar
  10. Hessen, D. O., 1985. The relation between bacterial carbon and dissolved humic compounds in oligotrophic lakes. FEMS Microbiol. Ecol. 31: 215–223.CrossRefGoogle Scholar
  11. Hessen, D. O., 1989. Factors determining the nutritive status and production of zooplankton in a humic lake. J. Plankton Res. 11: 649–664.Google Scholar
  12. Hessen, D. O., T. Andersen & A. Lyche, 1989. Differential grazing and resource utilization of zooplankton in a humic lake. Arch. Hydrobiol. 114: 321–347.Google Scholar
  13. Hessen, D. O., T. Andersen & A. Lyche, 1990. Carbon metabolism in a humic lake; pool sizes and cycling through zooplankton. Limnol. Oceanogr. 35: 84–99.Google Scholar
  14. Hessen, D. O. & T. Andersen, 1990. Bacteria as a source of phosphorus for zooplankton. Hydrobiologia 206: 217–223.Google Scholar
  15. Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of nucleopore filters for counting bacteria by fluorescent microscopy. Appl. Envir. Microbiol. 33: 1225–1228.Google Scholar
  16. Jensen, L. M. & S. Schwærter, 1988. Major pathways involved in the utilization of primary production in a temperature eutrophic lake. Verb. int. Ver. Limnol. 23: 445–450.Google Scholar
  17. Jensen, L. M. & M. Søndergaard, 1985. Comparison of two methods to measure algal release of dissolved organic carbon and the subsequent uptake by bacteria. J. Plankton Res. 7: 41–56Google Scholar
  18. Johansson, J. Å., 1983. Seasonal development of bacterioplankton in two forest lakes in central Sweden. Hydrobiologia 101: 71–88.CrossRefGoogle Scholar
  19. Jones, R. I. & K. Salonen, 1985. The importance of bacterial utilization of released phytoplankton photosynthate in two humic forest lakes in southern Finland. Holarct. Ecol. 8: 133–140.Google Scholar
  20. Jordan, M. & G. E. Likens, 1980. Measurement of planktonic bacterial production in an oligotrophic lake. Limnol. Oceanogr. 25: 719–732.Google Scholar
  21. Lampert, W., 1978. Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23: 831–834.CrossRefGoogle Scholar
  22. Larsson, U. & Å. Hagstrøm, 1982. Fractionated phytoplankton primary production, exudate release, and bacterial production in a baltic eutrophication gradient. Mar. Biol. 67: 57–70.CrossRefGoogle Scholar
  23. Lovell, C. R. & A. Konopka, 1985. Primary and bacterial production in two dimictic Indiana lakes. Appl. envir. Microbiol. 49: 485–491.Google Scholar
  24. Murray, R. E. & R. E. Hodson, 1985. Annual cycle of bacterial production in five aquatic habitats of the Okefenokee Swamp ecosystem. Appl. envir. Microbiol. 49: 650–655.Google Scholar
  25. Olsen, Y., A. Jensen, H. Reinertsen, Y. Børsheim, M. Heldal & A. Langeland, 1986. Dependence on the rate of release of phosphorus by zooplankton on the P:C-ratio in the food supply as calculated by the recycling model. Limnol. Oceanogr. 31: 34–44.Google Scholar
  26. Riemann, B., M. Søndergaard, H.-H. Schierup, S. Bosselmann, G. Christensen, J. Hansen & B. Nilsen, 1982. Carbon metabolism during a spring peak in the eutrophic Lake Mossø. Int. Revue ges. Hydrobiol. 67: 145–185.Google Scholar
  27. Riemann,B. & M. Søndergaard, 1986. Regulations of bacterial secondary production in two eutrophic lakes and in experimental enclosures. J. Plankton Res. 8: 519–536.Google Scholar
  28. Salonen, K., 1981. The ecosystem of the oligotrophic Lake Paajarvi. 2. Bacterioplankton. Verh. int. Ver. Limnol. 21: 448–453.Google Scholar
  29. Salonen, K., K. Kolonen & L. Arvola, 1983. Respiration of plankton in two small, polyhumic lakes. Hydrobiologia 101: 65–70.CrossRefGoogle Scholar
  30. Søndergaard, M. B., B. Riemann & N. O. G. Jørgensen, 1985. Extracellular organic carbon (EOC) released by phytoplankton and bacterial production. Oikos 45: 323–332.Google Scholar
  31. Tempest, D. W., O. M. Neijssel & M. J. Teixeira de Mattos, 1985. Regulation of carbon substrate metabolism in bacteria growing in chemostat culture. In I. S. Kulaev, E. W. Dawes & D. W. Tempest (eds) Environmental regulation of bacterial metabolism. Acad. Press., New York, p. 53–69.Google Scholar
  32. Thingstad, T. F., 1987. Utilization of N, P, and organic C by heterotrophic bacteria. I. Outline of a chemostate theory with a consistent concept of ‘maintenance’ metabolism. Mar. Ecol. Progr. Ser. 35: 99–109.Google Scholar
  33. Tranvik, L., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311–322.CrossRefGoogle Scholar
  34. Tranvik, L. & M. Hofle, 1987. Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Appl. envir. Microbiol. 53: 482–488.Google Scholar
  35. Vadstein, O. & Y. Olsen, 1989. Chemical composition and phosphate uptake kinetics of limnetic bacterial communities cultured in chemostats under phosphorus limitation. Limnol. Oceanogr. 34: 939–946.Google Scholar
  36. Vadstein, O., B. O. Harkjerr, A. Jensen, Y. Olsen & H. Reinertsen, 1989. Cycling of organic carbon in the photic zone of a eutrophic lake with special reference to the heterotrophic bacteria. Limnol. Oceanogr. 34: 840–855.Google Scholar
  37. Vollenweider, R. A. (Ed.), 1969. A manual on methods for measuring primary production in aquatic environments. IBP-handbook no. 12, Blackwell Sci. Publ. Oxford. 214 pp.Google Scholar
  38. Watson, S. W., T. J. Novitsky, H. L. Quinby & F. M. Velois, 1977. Determination on bacterial number and biomass in the marine environment. Appl. envir. Microbiol. 33: 940–946.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Dag O. Hessen
    • 1
  1. 1.Norwegian Institute for Water ResearchOslo 8Norway

Personalised recommendations