, Volume 229, Issue 1, pp 73–91 | Cite as

The influence of humic substances on lacustrine planktonic food chains

  • Roger I. Jones
DOM as an energy source


Humic substances (HS) might influence planktonic food chains in lakes in two ways: 1) by altering the physical or chemical environment and thus modifying autotrophic primary production and the dependent food chains; 2) by acting as a direct carbon/energy source for food chains.

HS compete with phytoplankton for available quanta underwater and this effect is seen in the reduced euphotic zone depth in lakes with high concentrations of HS. Thus potential photosynthetic production is lower in the presence of HS. However, this effect can be offset in small lakes in which the depth of mixing is also reduced when HS concentrations are high. Complexation by HS of important nutrients such as iron and phosphorus may also restrict primary production.

Evidence is accumulating that photosynthetic primary production is insufficient to support measured metabolic activity in humic lakes, which implies that metabolism of allochthonous HS underpins much of the observed activity. Studies of bacterial abundance and growth in the presence of HS support the view that bacteria are the most significant utilisers of HS. This use is apparently facilitated by photolysis of HS, particularly by short wavelength radiation. Bacteria are grazed by both micro-zooplankton (heterotrophic and mixotrophic flagellates and ciliates) and macrozooplankton. It is within this microbial community that the food chains derived from autotrophic and allotrophic sources interact. These effects of HS on food chains are discussed in relation to possible implications for the response of different lake types to eutrophication.

Key words:

lakes humic substances plankton food chains 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiken, G. R., D. M. McKnight, R. L. Wershaw & P. MacCarthy (eds), 1985. Humic substances in soil, sediment and water. J. Wiley & Sons, N.Y., 692 pp.Google Scholar
  2. Amador, J. A., M. Alexander & R. G. Zika, 1989. Sequential photochemical and microbial degradation of organic molecules bound to humic acid. Appl. envir. Microbiol. 55: 2843–2849.Google Scholar
  3. Anderson, M. A. & F. M. M. Morel, 1982. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnol. Oceanogr. 27: 789–813.Google Scholar
  4. Arvola, L., 1984. Vertical distribution of primary production and phytoplankton in two small lakes with different humus concentration in southern Finland. Holarct. Ecol. 7: 390–398.Google Scholar
  5. Arvola, L. & P. Kankaala, 1989. Winter and spring variability in phyto- and bacterioplankton in lakes with different water colour. Aqua fenn. 19: 29–39.Google Scholar
  6. Arvola, L., K. Salonen & M. Rask, 1990. Chemical budgets for a small dystrophic lake in southern Finland. Limnologica (Berlin) In Press.Google Scholar
  7. Auclair, J. C., P. Brassard & P. Couture, 1985. Effects of two molecular weight fractions on phosphorus cycling in natural phytoplankton communities. Wat. Res. 19: 1447–1453.Google Scholar
  8. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L.-A. MeyerReil & F. Thingstad, 1983. The ecological role of watercolumn microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.Google Scholar
  9. Bell, R. T. & J. Kuparinen, 1984. Assessing phytoplankton and bacterioplankton production during early spring in Lake Erken, Sweden. Appl. envir. Microbiol. 45: 1709–1721.Google Scholar
  10. Bird, D. F. & J. Kalff, 1987. Algal phagotrophy: Regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol. Oceanogr. 32: 277–284.Google Scholar
  11. Bird, D. F. & J. Kalff, 1989. Phagotrophic sustenance of a metalimnetic phytoplankton peak. Limnol. Oceanogr. 34: 155–162.Google Scholar
  12. Birge, E. A. & C. Juday, 1927. The organic content of the water of small lakes. Proc. Amer. Phil. Soc. 66: 357–372.Google Scholar
  13. Boraas, M. E., K. W. Estep, P. W. Johnson & J. McN. Sieburth, 1988. Phagotrophic phototrophs: The ecological significance of mixotrophy. J. Protozool. 35: 249–252.Google Scholar
  14. Bowling, L. C., 1990. Heat contents, thermal stabilities and Birgean wind work in dystrophic Tasmanian lakes and reservoirs. Aust. J. Mar. Freshwat. Res. 41: 429–441.Google Scholar
  15. Bowling, L. C. & K. Salonen, 1990. Heat uptake and resistance to mixing in small humic forest lakes in southern Finland. Aust. J. Mar. Freshwat. Res. 41: 747–759.Google Scholar
  16. Brassard, P. & J. C. Auclair, 1984. Orthophosphate uptake rate constants are mediated by the 103–104 molecular weight fraction in Shield lakewater. Can. J. Fish. aquat. Sci. 41: 166–173.Google Scholar
  17. Bratbak, G. & T. F. Thingstad, 1985. Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism. Mar. Ecol. Prog. Ser. 25: 23–30.Google Scholar
  18. Button, D. K., 1985. Kinetics of nutrient-limited transport and microbial growth. Microb. Rev. 49: 270–297.Google Scholar
  19. Caron, D. A., J. C. Goldman & M. R. Dennett, 1988. Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles. Hydrobiologia 159: 27–40.Google Scholar
  20. Chrost, R. J., U. Münster, H. Rai, D. Albrecht, P. K. Witzel & J. Overbeck, 1989. Photosynthetic production and exoenzymatic degradation of organic matter in the euphotic zone of a eutrophic lake. J. Plankton Res. 11: 223–242.Google Scholar
  21. Cole, J. J., G. E. Likens & D. L. Strayer, 1982. Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol. Oceanogr. 27: 1080–1090.Google Scholar
  22. Cole, J. J., W. H. McDowell & G. E. Likens, 1984. Sources and molecular weight of ‘dissolved’ organic carbon in an oligotrophic lake. Oikos 42: 1–9.Google Scholar
  23. Cotner, J. B. & R. T. Heath, 1990. Iron redox effects on photosensitive phosphorus release from dissolved humic materials. Limnol. Oceanogr. 35: 1175–1181.Google Scholar
  24. Coveney, M. F., 1982. Bacterial uptake of photosynthetic carbon from freshwater phytoplankton. Oikos, 38: 8–20.Google Scholar
  25. Croome, R. L. & P. A. Tyler, 1988. Phytoflagellates and their ecology in Tasmanian polyhumic lakes. Hydrobiologia 161: 245–253.Google Scholar
  26. Currie, D. J. & J. Kalff, 1984. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limmnol. Oceanogr. 29: 298–310.Google Scholar
  27. De Haan, H., 1974. Effect of a fulvic acid fraction on the growth of a Pseudomonas from Tjeukemeer (The Netherlands). Freshwat. Biol. 4: 301–309.Google Scholar
  28. De Haan, H., 1977. Effect of benzoate on microbial decomposition of fulvic acid in Tjeukemeer (The Netherlands). Limnol. Oceanogr. 22: 38–44.Google Scholar
  29. De Haan, H., 1992. Impacts of environmental changes on the biogeochemistry of aquatic humic substances. Hydrobiologia 229: 59–71.Google Scholar
  30. De Haan, H. & T. De Boer, 1979. Seasonal variations of fulvic acids, amino acids, and sugars in Tjeukemeer, The Netherlands. Arch. Hydrobiol. 85: 30–40.Google Scholar
  31. De Haan, H. & T. De Boer, 1986. Geochemical aspects of aqueoua iron, phosphorus and dissolved organic carbon in the humic Lake Tjeukemeer, The Netherlands. Freshwat. Biol. 16: 661–672.Google Scholar
  32. De Haan, H., R. I. Jones & K. Salonen, 1987. Does ionic strength affect the configuration of aquatic humic substances, as indicated by gel filtration? Freshwat. Biol. 17: 453–459.Google Scholar
  33. De Haan, H., R. I. Jones & K. Salonen, 1990. Abiotic transformations of iron and phosphate in humic lake water, revealed by double isotope labelling and gel filtration. Limnol. Oceanogr. 35: 35: 491–497.Google Scholar
  34. Eloranta, P., 1978. Light penetration in different types of lakes in Central Finland. Holarct. Ecol. 1: 362–366.Google Scholar
  35. Estep, K. W., P. G. Davis, M. D. Keller & J. McN. Sieburth, 1986. How important are oceanic algal nanoflagellates in bacterivory? Limnol. Oceanogr. 31: 646–650.Google Scholar
  36. Forsyth, D. J. & M. R. James, 1984. Zooplankton grazing on lake bacterioplankton and phytoplankton. J. Plankton Res. 6: 803–810.Google Scholar
  37. Francko, D. A., 1986. Epilimnetic phosphorus cycling: Influence of humic materials and iron coexisting major mechanisms. Can. J. Fish. aquat. Sci. 43: 302–310.Google Scholar
  38. Francko, D. A. & R. T. Heath, 1979. Functionally distinct classes of complex phosphorus compounds in lake water. Limnol. Oceanogr. 24: 463–473.Google Scholar
  39. Francko, D. A. & R. T. Heath, 1982. UV-sensitive complex phosphorus: association with dissolved humic material and iron in a bog lake. Limnol. Oceanogr. 27: 564–569.Google Scholar
  40. Geller, A., 1985a. Light-induced conversion of refractory, high molecular weight lake water constituents. Schweiz. Z. Hydrol. 47: 21–26.Google Scholar
  41. Geller, A., 1985b. Degradation and formation of refractory DOM by bacteria during simultaneous growth on labile substrates and persistent lake water constituents. Schweiz. Z. Hydrol. 47: 27–44.Google Scholar
  42. Geller, W. & H. Müller, 1981. The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49: 316–321.Google Scholar
  43. Guildford, S. J., F. P. Healey & R. E. Hecky, 1987. Depression of primary production by humic matter and suspended sediment in limnocorral experiments at Southern Indian Lake, Northern Manitoba. Can. J. Fish. aquat. Sci. 45: 1408–1417.Google Scholar
  44. Glide, H., 1985. Influence of phagotrophic processes on the regeneration of nutrients in two-stage continuous culture systems. Microb. Ecol. 11: 193–204.Google Scholar
  45. Hakala, I., 1974. Sedimentaatio Pääjarvessä. Luonnon Tutkija 78: 108–110.Google Scholar
  46. Havens, K. E. III., 1989. Seasonal succession in the plankton of a naturally acidic, highly humic lake in Northeastern Ohio, USA. J. Plankton Res. 11: 1321–1327.Google Scholar
  47. Hessen, D. O., 1985a. The relation between bacterial carbon and dissolved humic compounds in oligotrophic lakes. FEMS Microbiol. Ecol. 31: 215–223.Google Scholar
  48. Hessen, D. O., 1985b. Filtering structures and particle size selection in coexisting cladocerans. Oecologia 66: 368–372.Google Scholar
  49. Hessen, D. O. & A. K. Schartau, 1988. Seasonal and spatial overlap between cladocerans in humic lakes. Int. Revue ges. Hydrobiol. 73: 379–405.Google Scholar
  50. Hessen, D. O., T. Andersen & A. Lyche, 1989. Differential grazing and resource utilization of zooplankton in a humic lake. Arch. Hydrobiol. 114: 321–347.Google Scholar
  51. Hessen, D. O., T. Andersen & A. Lyche, 1990. Carbon metabolism in a humic lake: pool sizes and cycling through zooplankton. Limnol. Oceanogr. 35: 84–99.Google Scholar
  52. Ilmavirta, V., 1984. The ecology of flagellated phytoplankton in brown-water lakes. Verb. int. Ver. Limnol. 22: 817–821.Google Scholar
  53. Ilmavirta, V., 1988. Phytoflagellates and their ecology in Finnish brown-water lakes. Hydrobiologia 161: 255–270.Google Scholar
  54. Jackson, T. A. & R. E. Hecky, 1980. Depression of primary productivity by humic matter in lake and reservoir waters of the boreal forest zone. Can. J. Fish. aquat. Sci. 37: 2300–2317.Google Scholar
  55. Järnefelt, H., 1958. On the typology of the northern lakes. Verb. int. Ver. Limnol. 13: 228–235.Google Scholar
  56. Jones, A. K. & R. C. Cannon, 1986. The release of microalgal photosynthate and associated bacterial uptake and heterotrophic growth. Br. phycol. J. 21: 341–358.Google Scholar
  57. Jones, R. I., 1977a. Factors controlling phytoplankton production and succession in a highly eutrophic lake (Kinnego Bay, Lough Neagh). II. Phytoplankton production and its chief determinants. J. Ecol. 65: 561–577.Google Scholar
  58. Jones, R. I., 1977a. Factors controlling phytoplankton production and succession in a highly eutrophic lake (Kinnego Bay, Lough Neagh). III. Interspecific competition in relation to irradiance and temperature. J. Ecol. 65: 579–586.Google Scholar
  59. Jones, R. I., 1990. Phosphorus transformations in the epilimnion of humic lakes: biological uptake of phosphate. Freshwat. Biol. 23: 323–337.Google Scholar
  60. Jones, R. I. & L. Arvola, 1984. Light penetration and some related characteristics in small forest lakes in southern Finland. Verh. int. Ver. Limnol. 22: 811–816.Google Scholar
  61. Jones, R. I. & K. Salonen, 1985. The importance of bacterial utilization of released phytoplankton photosynthate in two humic forest lakes in southern Finland. Holarct. Ecol. 8: 133–140.Google Scholar
  62. Jones, R. I., K. Salonen & H. De Haan, 1988. Phosphorus transformations in the epilimnion of humic lakes: abiotic interactions between dissolved humic materials and phosphate. Freshwat. Biol. 19: 357–369.Google Scholar
  63. Kankaala, P., 1988. The relative importance of algae and bacteria as food for Daphnia longispina (Cladocera) in a polyhumic lake. Freshwat. Biol. 19: 285–296.Google Scholar
  64. Kieber, D. J., J. McDaniel & K. Mopper, 1989. Photochemical source of biological substrates in seawater: implications for carbon cycling. Nature 341: 637–639.Google Scholar
  65. Kirk, J. T. O., 1983. Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, 401 pp.Google Scholar
  66. Latja, R., 1974. Pääjärven eläinplankton. Luonnon Tutkija 78: 153–156.Google Scholar
  67. Makarewicz, J. C., G. E. Likens & M. J. Jordan, 1985. Interactions between bacteria and phytoplankton. In G. E. Likens (ed.), An Ecosystem Approach to Aquatic Ecology. Springer-Verlag, New York: 323–324.Google Scholar
  68. Miles, C. J. & P. L. Brezonik, 1981. Oxygen consumption in humic-colored waters by a photochemical ferrous-ferric catalytic cycle. Envir. Sci. Technol. 15: 1089–1095.Google Scholar
  69. Pedros-Alio, C. & T. D. Brock, 1983. The impact of zooplankton feeding on the epilimnetic bacteria of a eutrophic lake. Freshwat. Biol. 13: 227–239.Google Scholar
  70. Peterson, B. J., J. E. Hobbie & J. F. Haney, 1978. Daphnia grazing on natural bacteria. Limnol. Oceanogr. 23: 1039–1045.Google Scholar
  71. Pomeroy, L. R., 1974. The ocean's food web, a changing paradigm. BioScience 24: 499–504.Google Scholar
  72. Pomeroy, L. R. & W. J. Wiebe, 1988. Energetics of microbial food webs. Hydrobiologia 159: 7–18.Google Scholar
  73. Prakash, A., M. A. Rashid, A. Jensen & D. V. Subba Rao, 1973. Influence of humic substances on the growth of marine phytoplankton: diatoms. Limnol. Oceanogr. 18: 516–524.Google Scholar
  74. Pratt, J. R. & J. D. Chappell, 1989. Abundance and feeding of microheterotrophic flagellates from a eutrophic lake. Hydrobiologia 182: 165–169.Google Scholar
  75. Provasoli, L., 1963. Organic regulation of phytoplankton fertility. In The Sea, Vol. 2. Wiley-Interscience, New York: 165–219.Google Scholar
  76. Ramberg, L., 1979. Relations between phytoplankton and light climate in two Swedish forest lakes. Int. Revue ges. Hydrobiol. 64: 749–782.Google Scholar
  77. Rask, M., A. Heinänen, K. Salonen, L. Arvola, I. Bergström, M. Liukkonen & A. Ojala, 1986. The limnology of a small, naturally acidic, highly humic lake. Arch. Hydrobiol. 106: 351–371.Google Scholar
  78. Runner, F., 1963. Fundamentals of limnology. 3rd edn. University of Toronto Press, Toronto, 307 pp.Google Scholar
  79. Ryhänen, R., 1968. Die Bedeutung der Humussubstanzen im Stoffhaushalt der Gewässer Finnlands. Mitt. int. Ver. Limnol. 14: 168–178.Google Scholar
  80. Salonen, K., 1981. The ecosystem of the oligotrophic Lake Pääjarvi. 2. Bacterioplankton. Verh. int. Ver. Limnol. 21: 448–453.Google Scholar
  81. Salonen, K. & L. Arvola, 1988. A radiotracer study of zooplankton grazing in two small humic lakes. Verh. int. Ver. Limnol. 23: 462–469.Google Scholar
  82. Salonen, K. & T. Hammar, 1986. On the importance of dissolved organic matter in the nutrition of zooplankton in some lake waters. Oecologia 68: 246–253.Google Scholar
  83. Salonen, K. & S. Jokinen, 1988. Flagellate grazing on bacteria in a small dystrophic lake. Hydrobiologia 161: 203–209.Google Scholar
  84. Salonen, K. & T. Tulonen, 1990. Photochemical and biological transformations of dissolved humic substances. (Abstract). Verb. int. Ver. Limnol. 24: 294.Google Scholar
  85. Salonen, K., K. Kononen & L. Arvola, 1983. Respiration of plankton in two small, polyhumic lakes. Hydrobiologia 101: 65–70.Google Scholar
  86. Salonen, K., L. Arvola, H. De Haan, T. Hammar, S. Jokinen, R. Jones, P. Kankaala, A. Lehtovaara, A. Ojala & U. Smolander, 1987. Progress reports: Research on humic lakes. Lammi Notes 14: 6–7.Google Scholar
  87. Salonen, K., T. Kairesalo, L. Arvola, T. Hammar, P. Kankaala, A. Lehtovaara, A. Ojala & T. Tulonen, 1990. Progress reports: Food chains of humic lakes. Lammi Notes 17: 1.Google Scholar
  88. Salonen, K., L. Arvola, T. Tulonen, T. Hammar, T.-R. Metsälä, P. Kankaala & U. Münster, 1992a. Planktonic food chains of a highly humic lake. I. A mesocosm experiment during the spring primary production maximum. Hydrobiologia 229: 125–142.Google Scholar
  89. Salonen, K., P. Kankaala, T. Tulonen, T. Hammar, M. James, T.-R. Metsälä & L. Arvola, 1992b. Planktonic food chains of a highly humic lake. II. A mesocosm experiment in summer during dominance of heterotrophic processes. Hydrobiologia 229: 143–157.Google Scholar
  90. Sarvala, J., V. Ilmavirta, L. Paasivirta & K. Salonen, 1981. The ecosystem of the oligotrophic Lake Pääjärvi 3. Secondary production and an ecological energy budget of the lake. Verh. int. Ver. Limnol. 21: 422–427.Google Scholar
  91. Sanders, R. W. & K. G. Porter, 1988. Phagotrophic phytoflagellates. Adv. microb. Ecol. 10: 167–192.Google Scholar
  92. Sandgren, C. D., 1988. The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In C. D. Sandgren (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 9–104.Google Scholar
  93. Satoh, Y. & H. Abe, 1987. Dissolved organic matter in colored water from mountain bog pools in Japan. II. Biological decomposability. Arch. Hydrobiol. 111: 25–35.Google Scholar
  94. Schell, D. M., 1983. Carbon-13 and carbon-14 abundances in Alaskan aquatic organisms: delayed production from peat in Arctic food webs. Science, 219: 1068–1071.Google Scholar
  95. Sederholm, H., A. Mauranen & L. Montonen, 1973. Some observations on the microbial degradation of humus substances in water. Verh. int. Ver. Limnol. 18: 1301–1305.Google Scholar
  96. Sepers, A. B. J., 1977. The utilization of dissolved organic compounds in aquatic environments. Hydrobiologia 52: 39–54.Google Scholar
  97. Sherr, E. B., 1988. Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature 335: 348–351.Google Scholar
  98. Sherr, B. F., E. B. Sherr & C. S. Hopkinson, 1988. Trophic interactions within pelagic microbial communities: Indications of feedback regulation of carbon flow. Hydrobiologia 159: 19–26.Google Scholar
  99. Siegel, A., 1971. Metal-organic interactions in the marine environment. In S. D. Faust & J. V. Hunder (eds), Organic Compounds in Aquatic Environment. Marcel Dekker: 265–295.Google Scholar
  100. Sleigh, M. A., 1989. Protozoa and other protists. Edward Arnold, London, 342 pp.Google Scholar
  101. Stahel, H.-H., K. Moaledj & J. Overbeck, 1979. On the degradation of dissolved organic molecules from Plussee by oligocarbophilic bacteria. Arch. Hydrobiol. Beih. Ergebn. Limnol. 12: 95–104.Google Scholar
  102. Steinberg, C. & G. F. Baltes, 1984. Influence of metal compounds on fulvic acid/molybdenum blue reactive phosphate associations. Arch. Hydrobiol. 100: 61–71.Google Scholar
  103. Steinberg, C. & A. Herrmann, 1981. Utilization of dissolved metal organic compounds by freshwater microorganisms. Verb. int. Ver. Limnol. 21: 231–235.Google Scholar
  104. Steinberg, C. & U. Muenster, 1985. Geochemistry and ecological role of humic substances in lake water. In G. R. Aiken et al. (eds), Humic Substances in Soil, Sediment and Water. J. Wiley & Sons, N.Y.: 104–145.Google Scholar
  105. Stevens, R. J. & B. M. Stewart, 1982. Concentration, fractionation and characterization of soluble organic phosphorus in river water entering Lough Neagh. Wat. Res. 16: 1507–1519.Google Scholar
  106. Stewart, A. J. & R. G. Wetzel, 1981. Dissolved humic materials: Photodegradation, sediment effects, and reactivity with phosphate and calcium carbonate precipitation. Arch. Hydrobiol. 92: 265–286.Google Scholar
  107. Stewart, A. J. & R. G. Wetzel, 1982. Influence of dissolved humic materials on carbon assimilation and alkaline phosphatase activity in natural algal-bacterial assemblages. Freshwat. Biol. 12: 369–380.Google Scholar
  108. Strome, D. J. & M. C. Miller, 1978. Photolytic changes in dissolved humic substances. Verb. int. Ver. Limnol. 20: 1248–1254.Google Scholar
  109. Sundh, I., 1989. Characterization of phytoplankton extracellular products (PDOC) and their subsequent uptake by heterotrophic organisms in a mesotrophic fores lake. J. Plankton Res. 11: 463–486.Google Scholar
  110. Tailing, J. F., 1957. The phytoplankton population as a compound photosynthetic system. New Phytol. 56: 133–149.Google Scholar
  111. Thienemann, A., 1925. Die Binnengewässer Mitteleuropas. Die Binnengewässer, 1, 255 pp.Google Scholar
  112. Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311–322.Google Scholar
  113. Tranvik, L. J., 1989. Bacterioplankton growth, grazing mortality and quantitative relationship to primary production in a humic and a clearwater lake. J. Plankton Res. 11: 985–1000.Google Scholar
  114. Tranvik, L. J. & M. G. Höfle, 1987. Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Appl. envir. Microbiol. 53: 482–488.Google Scholar
  115. Tranvik, L. J., K. G. Porter & J. McN. Sieburth, 1989. Occurrence of bacterivory in Cryptomonas, a common freshwater phytoplankter. Oecologia 78: 473–476.Google Scholar
  116. Vadstein, O., B. O. Harkjerr, A. Jensen, Y. Olsen & H. Reinertsen, 1989. Cycling of organic carbon in the photic zone of a eutrophic lake with special reference to the heterotrophic bacteria. Limnol. Oceanogr. 34: 840–855.Google Scholar
  117. Veen, A., 1990. Phagotrophy by Dynobryon: a survival strategy in a low-nutrient environment? (Abstract). Br. phycol. J. 25: 98–99.Google Scholar
  118. Visser, S. A., 1984. Seasonal changes in the concentration and colour of humic substances in some aquatic environments. Freshwat. Biol. 14: 79–87.Google Scholar
  119. Wall, D. & F. Briand, 1979. Response of lake phytoplankton communities to in situ manipulations of light intensity and colour. J. Plankton Res. 1: 103–112.Google Scholar
  120. Watanabe, Y. & C. R. Goldman, 1984. Heterotrophic bacterial community in oligotrophic Lake Tahoe. Verh. int. Ver. Limnol. 22: 584–590.Google Scholar
  121. Wetzel, R. G., 1983. Limnology, 2nd edn. W.B. Saunders Co., Philadelphia.Google Scholar
  122. Williams, P. J. leB., 1981. Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web. Kieler Meeresforsch. Sonderh. 5: 1–28.Google Scholar
  123. Wright, R. T., 1984. Dynamics of pools of dissolved organic carbon. In J. E. Hobbie & P. J. leB. Williams (eds), Heterotrophic Activity in the Sea. Proc. NATO ARI, Cascais, Portugal, 1981. Plenum, NY: 121–154.Google Scholar
  124. Wright, R. T., 1988. A model for short-term control of the bacterioplankton by substrate and grazing. Hydrobiologia 159: 111–117.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Roger I. Jones
    • 1
  1. 1.Division of Biological Sciences, Institute of Environmental and Biological SciencesUniversity of LancasterLancasterUK

Personalised recommendations