, Volume 229, Issue 1, pp 1–21 | Cite as

Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in precambrian shield lakes

  • D. W. Schindler
  • S. E. Bayley
  • P. J. Curtis
  • B. R. Parker
  • M. P. Stainton
  • C. A. Kelly
Origin and nature of DOM in lakes


Effects of natural factors (drought and forest fire), and experimental perturbations (fertilization and acidification) on dissolved organic carbon (DOC) concentrations and ratios to other nutrients in lakes of the Experimental Lakes Area are examined using data obtained over a period of 20 years. DOC concentration, and the ratio of dissolved iron to DOC in lakes of the area were strongly correlated with the relative size of the catchment to the lake.

DOC in many lakes of the area declined over 20 years, due to increased water residence times caused by increasing average temperature and decreasing precipitation. Inexplicably, Lake 382 was an exception to this general observation. Acidification of Lake 302S to below pH 5.0 also caused DOC to decrease. The lesser acidification of Lake 223 (min. pH 5.0) did not significantly affect DOC. Experimental acidification of a small peatland also caused a temporary decline in DOC concentrations in bog pools. Changes in DOC appear to affect the availability of mercury for methylation. Addition of aluminum to a small acidic lake caused a two-fold decline in DOC.

Fertilization of Lake 227 caused a considerable increase in DOC, and in ratios of DOC to other carbon fractions. New stable ratios did not occur for a decade after fertilization began. Lake 226N, fertilized at a lower rate, showed similar but less pronounced increases in DOC, but the experiment was terminated after only eight years. Phosphorus fertilization caused a dramatic increase in the lability of the DOC pool in Lake 226N, where the autochthonous carbon pool was labelled with DI14C. A large increase in autochthonous production of DOC and increased microbial utilization of allochthonous DOC appear to have occurred.

DOC concentrations in streams were higher after drought, but concentrations were unrelated to flow volume during wet periods. Due to lower streamflows in drought years, annual yields of DOC from streams were unaffected by drought.

Mesocosm experiments showed that DOC's primary effect on iron is to inhibit sedimentation, possibly by suppressing flocculation reactions that are known to control the cycles of many metals.

The changes in DOC in lakes brought about by changes in water renewal, acidification, or other perturbations can have major effects on the cycles of metals, lake transparency, and phytoplankton production and standing crop.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, W., C. R. O'Melia & J. K. Edzwald, 1984. Colloidal stability of particles in lakes: Measurement and significance. Wat. Sci. Tech. 17: 701–712.Google Scholar
  2. Arvola, L., 1984. Vertical distribution of primary production and phytoplankton in two small lakes with different humic concentration in southern Finland. Holarct. Ecol. 7: 390–398.Google Scholar
  3. Bayley, S. E., D. H. Vitt, R. W. Newbury, K. G. Beaty, R. Behr & C. Miller, 1987. Experimental acidification of a Sphagnum-dominated peatland: first year results. Can. J. Fish. aquat. Sci. 44 (Suppl. 1): 194–205.Google Scholar
  4. Bayley, S. E., D. W. Schindler, K. G. Beaty, B. R. Parker & M. P. Stainton, 1992. Effects of multiple fires on nutrient yields from streams draining boreal forest and fen watersheds: nitrogen and phosphorus. Can. J. Fish. Aquat. Sci. (in press).Google Scholar
  5. Birge, E. A. & C. Juday, 1934. Particulate and dissolved organic matter in inland lakes. Ecol. Monogr. 4: 440–474.CrossRefGoogle Scholar
  6. Bower, P. M., 1981. Addition of radiocarbon to the mixed layers of two small lakes: Primary production, gas exchange, sedimentation, and carbon budget. Ph.D. thesis, Columbia University, New York. 238 pp.Google Scholar
  7. Bower, P. M. & D. McCorkle, 1980. Limnocorral radiocarbon spike: Gas exchange, photosynthetic uptake and carbon budget. Can. J. Fish. aquat. Sci. 37: 464–471.CrossRefGoogle Scholar
  8. Bower, P. M., C. A. Kelly, E. J. Fee, J. A. Shearer, D. R. De Clercq & D. W. Schindler, 1987. Simultaneous measurement of primary production of whole-lake and bottle radiocarbon additions. Limnol. Oceanogr. 32: 299–312.Google Scholar
  9. Brunskill, G. J. & D. W. Schindler, 1971. Geography and bathymetry of selected lake basins, Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Bd Can. 28: 139–155.Google Scholar
  10. Brunskill, G. J. & P. Wilkinson, 1987. Annual supply of 238U, 234U, 230Th, 226Ra, 210Pb, 210Po, and 232Th to Lake 239 (Experimental Lake Area, Ontario) from terrestrial and atmospheric sources. Can. J. Fish. aquat. Sci. 44 (Suppl. 1): 215–230.Google Scholar
  11. Cooper, W. B. & D. R. S. Lean, 1989. Hydrogen peroxide production in a north-temperate lake. Envir. Sci. Technol. 23:1425–1428.CrossRefGoogle Scholar
  12. Cronan, C. S., 1980. Controls on leaching from forest floor microcosms. Plant & Soil 56: 301–322.CrossRefGoogle Scholar
  13. Curtis, P. J., 1991. Biogeochemistry of iron in small Precambrian Shield lakes at the Experimental Lakes Area, northwestern Ontario. Ph.D. Thesis, University of Manitoba. 284 pp.Google Scholar
  14. Davies-Colley, R. J. & W. N. Vant, 1987. Absorption of light by yellow substance in freshwater lakes. Limnol. Oceanogr. 32: 416–425.Google Scholar
  15. De Haan, H., 1991. Impacts of environmental changes on the biogeochemistry of aquatic humic substances. Hydrobiologia (this volume).Google Scholar
  16. Dillon, P. J., H. E. Evans & P. J. Scholer, 1988. The effects of acidification on metal budgets of lakes and catchments. Biogeochem. 5: 201–220.CrossRefGoogle Scholar
  17. Drever, J., 1988. The geochemistry of natural waters. Prentice-Hall Inc., New Jersey. 437 pp.Google Scholar
  18. Effler, S. W., G. C. Schafran & C. T. Driscoll, 1985. Partitioning light attenuation in an acidic lake. Can. J. Fish. aquat. Sci. 42: 1707–1711.CrossRefGoogle Scholar
  19. Engstrom, D. R., 1987. Influence of vegetation and hydrology on the humus budgets of Labrador lakes. Can. J. Fish. aquat. Sci. 44: 1306–1314.Google Scholar
  20. Eshleman, K. N. & H. F. Hemond, 1985. The role of organic acids in the acid-base status of surface waters at Bickford Watershed, Massachusetts. Wat. Resour. Res. 21: 1503–1510.Google Scholar
  21. Findlay, D. L., 1984. Effects of phytoplankton biomass, succession and composition in Lake 223 as a result of lowering pH levels from 5.6 to 5.2. Data from 1980 to 1982. Can. MS Rep. Fish. aquat. Sci. 1761:iv + 16p.Google Scholar
  22. Findlay, D. L. & S. E. M. Kasian, 1987. Phytoplankton community response to nutrient addition in Lake 226, Experimental Lakes Area, northwestern Ontario. Can. J. Fish. aquat. Sci. 44 (suppl. 1): 35–46.Google Scholar
  23. Glover, G. M. & A. H. Webb, 1979. Weak and strong acids in the surface waters of the Tovdal region of southern Norway. Wat. Res. 13: 781–783.CrossRefGoogle Scholar
  24. Gorham, E., J. K. Underwood, F. B. Martin & J. G. Ogden III, 1986. Natural and anthropogenic causes of lake acidification in Nova Scotia. Nature 324: 451–453.CrossRefGoogle Scholar
  25. Guildford, S. J., F. P. Healey & R. E. Hecky, 1987. Depression of primary production by humic matter and suspended sediment in limnocorral experiments at Southern Indian Lake, northern Manitoba. Can. J. Fish. aquat. Sci. 44: 1408–1417.Google Scholar
  26. Heikkinen, K., 1989. Organic carbon transport in an undisturbed boreal humic river in northern Finland. Arch. Hydrobiol. 117: 1–19.Google Scholar
  27. Herczeg, A. L., 1985. Carbon dioxide equilibria and 13C studies in some soft water lakes. Ph.D. thesis, Columbia University, New York,. 260 pp.Google Scholar
  28. Herczeg, A. L., W. S. Broecker, R. F. Anderson & S. L. Schiff, 1985. A new method for monitoring temporal trends in the acidity of fresh waters. Nature 315: 133–135.CrossRefGoogle Scholar
  29. Hesslein, R. H., W. S. Broecker, P. D. Quay & D. W. Schindler, 1980. Whole lake radiocarbon experiment in an oligotrophic lake at the Experimental Lakes Area, northwestern Ontario. Can. J. Fish. aquat. Sci. 37: 454–463.Google Scholar
  30. Hobbie, J. E. & G. E. Likens, 1983. Output of phosphorus, dissolved organic carbon, and fine particulate carbon from Hubbard Brook Watersheds. Limnol. Oceanogr. 18: 734–742.Google Scholar
  31. Hutchinson, G. E., 1957. A Treatise on Limnology. Vol. 1. John Wiley & Sons, New York. 1015 pp.Google Scholar
  32. Jackson, T. A. & R. E. Hecky, 1980. Depression of primary production by humic matter in lake and reservoir waters of the boreal forest zone. Can. J. Fish. aquat. Sci. 37: 2300–2317.Google Scholar
  33. Janus, L. L. & R. A. Vollenweider, 1981. The OECD cooperative report on eutrophication: Canadian contribution. Summ. Rep. Sci. Ser. 132.Google Scholar
  34. Jones, R. 1., 1991. The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia (this volume).Google Scholar
  35. Kerekes, J., G. Howell & T. Pollock, 1984. Problems associated with sulfate determination in colored, humic waters in Kejimkujik National Park, Nova Scotia (Canada). Verb. int. Ver. Limnol. 22: 811–817.Google Scholar
  36. Kerekes, J., S. Beauchamp, R. Tordon, C. Tremblay & T. Pollock, 1986. Organic vs. anthropogenic acidity in tributaries of the Kejimkujik watersheds in western Nova Scotia. Wat. Air Soil Pollut. 31: 207–214.CrossRefGoogle Scholar
  37. Kortelainen, P. & J. Mannio, 1987. The contribution of acidic organic anions to the ion balance of lake waters, pp. 229–238. In: Acidification and Water Pathways. UNESCO conference, Bolkesjo, Norway, 4–5 May 1987. Vol. II.Google Scholar
  38. LaZerte, B. D. & P. J. Dillon, 1984. Relative importance of anthrophogenic versus natural sources of acidity in lakes and streams of central Ontario. Can. J. Fish. aquat. Sci. 42: 1664–1677.Google Scholar
  39. Levine, S. N. & D. W. Schindler, 1980. Radiochemical analysis of orthophosphate concentrations and seasonal changes in the flux of orthophosphate to seston in two Canadian Shield lakes. Can. J. Fish. aquat. Sci. 37: 479–487.Google Scholar
  40. Levine, S. N., M. P. Stainton & D. W. Schindler, 1986. A radiotracer study of phosphorus cycling in a eutrophic Canadian Shield lake, Lake 227, northwestern Ontario. Can. J. Fish. aquat. Sci. 43: 366–378.CrossRefGoogle Scholar
  41. Lewis, W. M. Jr. & M. C. Grant, 1979. Relationships between stream discharge and dissolved substances from a Colorado mountain watershed. Soil Sci. 128: 353–363.Google Scholar
  42. Likens, G. E., 1985. An ecosystem approach to aquatic ecology: Mirror Lake and its environment. Springer-Verlag, New York. 516 pp.Google Scholar
  43. Lorius, C., J. Jouzel, D. Raynaud, J. Hansen & H. Le Traut, 1990. The ice-core record: climate sensitivity and future greenhouse warming. Nature 347: 139–145.CrossRefGoogle Scholar
  44. McDowell, W. H. & G. E. Likens, 1988. Origin, composition and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol. Monogr. 58: 177–195.CrossRefGoogle Scholar
  45. McKnight,D., E. M. Thurman, R. Wershaw & H. Hemond, 1985. Biogeochemistry of aquatic humic substances in Thoreau's Bog, Concord, Massachusetts. Ecology 66: 1339–1352.CrossRefGoogle Scholar
  46. Meyer, J. L. & C. M. Tate, 1983. The effects of watershed disturbance on the dissolved organic carbon dynamics of a stream. Ecology 64: 33–44.CrossRefGoogle Scholar
  47. Meyer, J. L., C. M. Tate, R. T. Edwards & M. T. Crocker, 1987. The trophic significance of dissolved organic carbon in streams, pp. 269–278. In W. T. Swank and D. A. Crossley, Jr. (eds). Forest hydrology and ecology at Coweeta. Springer-Verlag, New York.Google Scholar
  48. Miskimmin, B. M., J. W. M. Rudd & C. A. Kelly, 1991. The influence of dissolved organic carbon, pH, and microbial respiration on mercury methylation and demethylation in lake water. Can. J. Fish. aquat. Sci. (in press).Google Scholar
  49. Mulholland, P. J. & E. J. Kuenzler, 1979. Organic carbon export from upland and forested wetland watersheds. Limnol. Oceanogr. 24: 960–966.Google Scholar
  50. Münster, U., P. Einiö, J. Nurminen & J. Overbeck, 1991. Extracellular enzymes in a polyhumic lake: important regulators in detritus processing. Hydrobiologia (this volume).Google Scholar
  51. Naiman, R. J., 1982. Characteristics of sediment and organic carbon export from pristine boreal forest watersheds. Can. J. Fish. aquat. Sci. 39: 1699–1718.CrossRefGoogle Scholar
  52. Nalewajko, C. & D. R. S. Lean, 1972. Growth and excretion in planktonic algae and bacteria. J. Phycol. 8: 361–366.CrossRefGoogle Scholar
  53. Nalewajko, C. & D. W. Schindler, 1976. Primary production, extracellular release, and heterotrophy in two lakes in the ELA, Northwestern Ontario. J. Fish Res. Bd. Can. 33: 219–226.Google Scholar
  54. Nilsson, J. L, 1985. Budgets of aluminium species, iron and manganese in the Lake Gardsjon catchment in SW Sweden. Ecol. Bull. (Stockholm) 37: 120–137.Google Scholar
  55. Pitkänen, H., 1986. Discharges of nutrients and organic matter to the Gulf of Bothnia by Finnish Rivers in 1968–1983, pp 72–83. In Kangas, P. and M. Forsskahl (eds). Proceedings of the 3rd Finnish seminar on the Gulf of Bothnia. Water Research Inst. Publ. no. 68, National Board of Waters and Environment, Helsinki.Google Scholar
  56. Quay, P. D., S. Emerson, B. M. Quay & A. H. Devol, 1986. The carbon cycle for Lake Washington - a stable isotope study. Limnol. Oceanogr. 31: 596–611.Google Scholar
  57. Rasmussen, J. B. & J. Kalff, 1987. Empirical models for zoobenthos in lakes. Can. J. Fish. aquat. Sci. 44: 990–1001.Google Scholar
  58. Rasmussen, J. B., L. Godbout & M. Schallenberg, 1989. The humic content of lake water and its relationship to watershed and lake morphometry. Limnol. Oceanogr. 34: 1336–1343.CrossRefGoogle Scholar
  59. Rau, G., 1978. Carbon-13 depletion in a subalpine lake: Carbon flow implications. Science 201: 901–902.PubMedGoogle Scholar
  60. Rudd, J. W. M. & C. D. Taylor, 1980. Methane cycling in aquatic environments. Adv. Aquat. Microbiol. 2: 77–150.Google Scholar
  61. udd, J. W. M., C. A. Kelly, D. W. Schindler & M. A. Turner, 1988. Disruption of the nitrogen cycle in acidified lakes. Science 240: 1515–1517.Google Scholar
  62. Rudd, J. W. M., C. A. Kelly, D. W. Schindler & M. A. Turner, 1990. A comparison of the acidification efficiencies of nitric and sulfuric acids by two whole-lake addition experiments. Limnol. Oceanogr. 35: 663–679.Google Scholar
  63. Sakamoto, M., 1971. Chemical factors involved in the control of phytoplankton production in the Experimental Lakes Area, northwestern Ontario. J. Fish Res. Bd. Can. 28: 203–213.Google Scholar
  64. Schiff, S. L., R. Aravena, S. E. Trumbore & P. J. Dillon, 1991. Dissolved organic carbon cycling in forested watersheds: A carbon isotope approach. Wat. Resour. Res. 26: 2949–2957.CrossRefGoogle Scholar
  65. Schindler, D. W., 1971a. An hypothesis to explain differences and similarities among lakes in the Experimental Lakes Area, northwestern Ontario. J. Fish Res. Bd Can. 28: 295–301.Google Scholar
  66. Schindler, D. W., 1971b. Light, temperature and oxygen regimes of selected lakes in the Experimental Lakes Area (ELA), northwestern Ontario. J. Fish Bd Can. 28: 157–169.Google Scholar
  67. Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.PubMedGoogle Scholar
  68. Schindler, D. W., 1980. Experimental acidification of a whole lake: a test of the oligotrophication hypothesis, pp. 370–373. In D. Drablos and A. Tollan (eds). Proc. Int. Conf. Imp. Acid Precip., Sandefjord, Norway. SNSF Project, Oslo, Norway.Google Scholar
  69. Schindler, D. W., 1988. Experimental studies of chemical stressors on whole lake ecosystems. Edgardo Baldi memorial lecture. Ver. int. Ver. Limnol. 23: 11–41.Google Scholar
  70. Schindler, D. W., 1990. Experimental perturbations of whole lakes as tests of hypotheses concerning ecosystem structure and function. Oikos 57: 25–41.Google Scholar
  71. Schindler, D. W., G. J. Brunskill, S. Emerson, W. S. Broecker & T.-H. Peng, 1972. Atmospheric carbon dioxide: Its role in maintaining phytoplankton standing crops. Science 177: 1192–1194.PubMedGoogle Scholar
  72. Schindler, D. W., R. Wagemann, R. B. Cook, T. Ruszczynski & J. Prokopowich, 1980. Experimental acidification of Lake 223, Experimental Lakes Area: background data and the first three years of acidification. Can. J. Fish. aquat. Sci. 37: 342–354.Google Scholar
  73. Schindler, D. W., R. H. Hesslein & M. A. Turner, 1987. Exchange of nutrients between sediments and water after 15 years of experimental eutrophication. Can. J. Fish. aquat. Sci. 44: (suppl. 1): 26–33.Google Scholar
  74. Schindler, D. W., K. Beaty, E. J. Fee, D. R. Cruikshank, E. R. DeBruyn, D. L. Findlay, G. A. Linsey, J. A. Shearer, M. P. Stainton & M. A. Turner, 1990. Effects of climatic warming on the lakes of the lakes of the central boreal forest. Science 250: 967–970.PubMedGoogle Scholar
  75. Schindler, D. W., T. M. Frost, K. H. Mills, P. S. S. Chang, I. J. Davies, D. L. Findlay, D. F. Malley, J. A. Shearer, M. A. Turner, P. J. Garrison, C. J. Watras, K Webster, J. M. Gunn, P. L. Brezonik & W. A. Swenson, 1991. Comparisons between experimentally- and atmospherically-acidified lakes during stress and recovery. Proc. Roy. Soc. Edinburgh 97B: 193–226.Google Scholar
  76. Shearer, J. A. & E. R. DeBruyn, 1986. Phytoplankton productivity responses to direct addition of sulfuric and nitric acids to the waters of a double basin lake. Wat. Air Soil Pollut. 30: 695–702.CrossRefGoogle Scholar
  77. Shearer, J. A., E. J. Fee, E. R. DeBruyn & D. R. DeClercq, 1987. Phytoplankton productivity changes in a small, double-basin lake in response to termination of experimental fertilization. Can. J. Fish. aquat. Sci. 44 (Suppl. 1): 47–54.Google Scholar
  78. Sholkowitz, E. R. & D. Copland, 1982. The chemistry of suspended matter in Esthwaite Water, a biologically productive lake with seasonally anoxic hypolimnion. Geochim. Cosmochim. Acta 46: 393–410.CrossRefGoogle Scholar
  79. Stainton, M. P., M. Capel & F. A. J. Armstrong, 1977. The chemical analysis of freshwater. 2nd. edition. Can. Fish, Mar. Serv. Misc. Spec. Publ. 25: 166 pp.Google Scholar
  80. Stumm, W. & J. Morgan, 1981. Aquatic chemistry. J. Wiley & Sons, New York. 780 pp.Google Scholar
  81. Talling, J. F., 1976. The depletion of carbon dioxide from water by phytoplankton. J. Ecol. 64: 79–122.CrossRefGoogle Scholar
  82. Tate, C. M. & J. L. Meyer, 1983. The influence of hydrologic conditions and successional state on dissolved organic carbon export from forested watersheds. Ecology 64: 25–32.CrossRefGoogle Scholar
  83. Tipping, E. & D. Cooke, 1982. The effects of adsorbed humic substances on the surface charge of goethite (alphaFeOOH) in freshwaters. Geochim. Cosmochim. Acta 46: 75–80.CrossRefGoogle Scholar
  84. Tipping, E. & M. Ohnstad, 1984. Colloid stability of iron oxide particles from a freshwater lake. Nature 308: 266–268.CrossRefGoogle Scholar
  85. Thompson, B. M. & R. D. Hamilton, 1973. Heterotrophic utilization of sucrose in an artificially enriched lake. J. Fish Res. Bd Can. 30: 1547–1552.Google Scholar
  86. Urban, N. R., S. J. Eisenreich & E. Gorham, 1987. Proton cycling, in bogs: Geographic variation in eastern North America, pp. 577–598. In T. C. Hutchinson & K. M. Meema (eds). The effects of air pollutants on forests, wet lands and agricultural ecosystems. Springer-Verlag, New York.Google Scholar
  87. Urban, N. R., S. E. Bayley & S. J. Eisenreich, 1989. Export of dissolved organic carbon and acidity from peatlands. Wat. Resour. Res. 25: 1619–1628.CrossRefGoogle Scholar
  88. van Breeman, N., C. T. Driscoll & J. Mulder, 1984. Acidic deposition and internal proton sources in acidification of soils and waters. Nature 307: 599–604.CrossRefGoogle Scholar
  89. Vertucci, F. A. & G. E. Likens, 1989. Spectral reflectance and water quality of Adirondack mountain region lakes. Limnol. Oceanogr. 34: 1656–1672.Google Scholar
  90. Wahlgren, M. A. & K. A. Orlandini, 1981. Comparison of the geochemical behavior of plutonium, thorium and uranium in selected North American lakes. In IAEA-SM-257/International symposium on migration in the terrestrial environment of long-lived radionuclides from the nuclear fuel cycle. Knoxville, Tenn., USA, 27–31 July 1981.Google Scholar
  91. Watras, C. J. & A. L. Baker, 1988. The spectral distribution of downwelling light in northern Wisconsin lakes. Arch. Hydrobiol. 112: 481–494.Google Scholar
  92. Weilenmann, U., C. R. O'Melia & W. Stumm, 1989. Particle transport in lakes: Models and measurements. Limnol. Oceanogr. 34: 1–18.Google Scholar
  93. Wetzel, R. G., 1991. Gradient dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia (this volume).Google Scholar
  94. Wetzel, R. G., P. H. Rich, M. C. Miller & H. L. Allen, 1972. Metabolism of dissolved and particulate organic matter in the sea. Deep Sea Res. 17: 19–27.Google Scholar
  95. Wissmar, R. C., J. E. Richey & D. E. Spyridakis, 1977. The importance of allochthonous particulate carbon pathways in a subalpine lake. J. Fish Res. Bd Can. 34: 1410–1418.Google Scholar
  96. Wright, R. F., E. Lotse & A. Semb, 1988. Reversibility of acidification shown by whole-catchment experiments. Nature 334: 670–675.CrossRefGoogle Scholar
  97. Yan, N. D., 1983. Effects of changes in pH on transparency and thermal regimes of Lohi Lake, near Sudbury, Ontario. Can. J. Fish. aquat. Sci. 40: 621–626.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • D. W. Schindler
    • 1
  • S. E. Bayley
    • 1
  • P. J. Curtis
    • 1
  • B. R. Parker
    • 1
  • M. P. Stainton
    • 2
  • C. A. Kelly
    • 3
  1. 1.Departments of Zoology and BotanyUniversity of AlbertaEdmontonCanada
  2. 2.Freshwater InstituteFisheries and Oceans CanadaWinnipegCanada
  3. 3.Department of MicrobiologyUniversity of ManitobaWinnipegCanada

Personalised recommendations