Hydrobiologia

, Volume 287, Issue 1, pp 147–156

Distribution patterns of interstitial freshwater meiofauna over a range of spatial scales, with emphasis on alluvial river-aquifer systems

  • J. V. Ward
  • M. A. Palmer
Article

Abstract

Spatial distribution patterns of the interstitial meiobenthos are examined across a range of scales. A global interstitial highway model is presented with the alluvial aquifer system as its central core. Spatially discontinuous hypogean entities, such as karstic aquifers, springs, anchialine waters and the psammolittoral, have limited interconnections except through the alluvial aquifer system and are contiguous with epigean waters. The global interstitial highway is viewed as an evolutionary pathway and long-term dispersal route for meiobenthic forms. The distribution of interstitial animals in alluvial river-aquifer systems is examined at longitudinal (altitudinal), reach, floodplain, gravel bar, and vertical (depth) scales. Geomorphic and hydrogeologic features and interactions emerge as major determinants of the spatially heterogeneous nature of alluvial aquifers that structure the patchy distribution patterns of hypogean fauna across a range of scales.

Key words

meiofauna biogeography interstitial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Botosaneanu, L. & J. R. Holsinger, 1991. Some aspects concerning colonization of the subterranean relam-especially of subterranean water: a response to Rouch & Danielopol, 1987. Stygologia 6: 11–39.Google Scholar
  2. Bretschko, G., 1981. Vertical distribution of zoobenthos in an alpine brook of the RITRODAT-LUNZ study area. Verh. int. Ver. Limnol. 21: 873–876.Google Scholar
  3. Bretschko, G., 1985. Quantitative sampling of the fauna of gravel streams. Verh. int. Ver. Limnol. 22: 2049–2052.Google Scholar
  4. Chappuis, P. A., 1942. Eine neue Methode zur Untersuchung der Grundwasser-fauna. Acta Sci. Math. Nat. Kolozsvar. 6: 3–7.Google Scholar
  5. Coineau, N., 1986. Isopoda: Asellota: Janiroidea. In L. Botosaneanu (ed.), Stygofauna Mundi. E. J. Brill, Leiden: 465–472.Google Scholar
  6. Creuzé des Châtelliers, M., 1991. Geomorphological processes and discontinuities in the macrodistribution of the interstitial fauna: A working hypothesis. Verh. int. Ver. Limnol. 24: 1609–1612.Google Scholar
  7. Creuzé des Châtelliers, M. & D. Poinsart, 1991. Caractéristiques des aquifères alluviaux et diversité faunistique du sous-écoulement du Rhône. Hydrogéologie 3: 201–215.Google Scholar
  8. Creuzé des Châtelliers, M. & J. L. Reygrobellet, 1990. Interactions between geomorphological processes, benthic and hyporheic communities: First results on a by-passed canal of the French upper Rhône River. Regulated Rivers 5: 139–158.Google Scholar
  9. Danielopol, D. L., 1976. The distribution of the fauna in the interstitial habitats of riverine sediments of the Danube and the Piesting (Austria). Int. J. Speleol 8: 23–51.Google Scholar
  10. Danielopol, D. L. 1982. Phreatobiology reconsidered. Pol. Arch. Hydrobiol. 29: 375–386.Google Scholar
  11. Danielopol, D. L., 1991. Spatial distribution and dispersal of interstitial Crustacea in alluvial sediments of a backwater of the Danube at Vienna. Stygologia 6: 97–110.Google Scholar
  12. Danielopol, D. L. & P. Marmonier, 1992. Aspects of research on groundwater along the Rhône, Rhine and Danube. Regulated Rivers 7: 5–16.Google Scholar
  13. Delamare-Deboutteville, C., 1960. Biologie des eaux souterraines littorales et continentales. Hermann, Paris, 740 pp.Google Scholar
  14. Dole, M.-J., 1983. Le domaine aquatique souterrain de la plaine alluviale du Rhône à l'est de Lyon. 1. Diversité hydrologique et biocénotique de trois stations représentatives de la dynamique fluviale. Vie Milieu 33: 219–229.Google Scholar
  15. Dole, M.-J., 1985. Le domaine aquatique souterrain de la plaine alluviale du Rhône à l'est de Lyon. 2. Structure verticale des peuplements des niveaux supérieurs de la nappe. Stygologia 1: 270–291.Google Scholar
  16. Dole, M.-J. & D. Chessel, 1986. Stabilité physique et biologique des milieux interstitiels. Cas de deux stations du Haut-Rhône. Annls Limnol. 22: 69–81.Google Scholar
  17. Erlich, H. A., 1989. PCR Technology: priciples and applications for DNA amplification. Stockton Press, New York, 246 pp.Google Scholar
  18. Fleeger, J. W. & A. W. Decho, 1987. Spatial variability of interstitial meiofauna: A review. Stygologia 3: 35–54.Google Scholar
  19. Gibert, J., M.-J. Dole-Olivier, P. Marmonier & P. Vervier, 1990. Surface water-groundwater ecotones. In R. J. Naiman & H. Décamps (eds), The Ecology and Management of Aquatic- terrestrial Ecotones. Parthenon, Casterton Hall, England: 199–225.Google Scholar
  20. Holsinger, J. R., 1986. Zoogeographic patterns of North American subterranean amphipod crustaceans. In R. H. Gore & K. L. Heck (eds), Crustacean Biogeography. Balkema, Leiden: 85–106.Google Scholar
  21. Holsinger, J. R., 1988. Troglobites: The evolution of cave-dwelling organisms. Am. Sci. 76: 146–153.Google Scholar
  22. Holsinger, J. R., J. S. Mort & A. D. Recklies, 1983. The subterranean crustacean fauna of Castleguard Cave, Columbia Icefields, Alberta, Canada, and its zoogeographic significance. Arctic Alpine Res. 15: 543–549.Google Scholar
  23. Husmann, S., 1971. Ecological studies on freshwater meiobenthon in layers of sand and gravel. Smithson. Contr. Zool. 76: 161–169.Google Scholar
  24. Hutchinson, G. E., 1953. The concept of pattern in ecology. Proc. Acad. nat. Sci. Phila. 105: 1–12.Google Scholar
  25. Hutchinson, G. E., 1967. A treatise on limnology, Vol. II. Wiley, New York, 1115 pp.Google Scholar
  26. Innis, M. A., D. H. Gelfand, J. J. Sninsky & T. J. White, 1990. PCR protocols: A guide to methods and applications. Academic Press, New York, 482 pp.Google Scholar
  27. Kane, T. C., D. C. Culver & R. T. Jones, 1992. Genetic structure of morphologically differentiated populations of the amphipod Gammarus minus. Evolution 46: 272–278.Google Scholar
  28. Karaman, S., 1935. Die Fauna unterirdischen Gewässer Jugoslawiens. Verh. int. Ver. Limnol. 7: 46–73.Google Scholar
  29. Kocher, T. D. & T. J. White, 1989. Evolutionary analysis via PCR. In H. A. Erlich (ed.), PCR Technology: Principles and Applications for DNA Amplification. Stockton Press, New York: 137–147.Google Scholar
  30. Levin, S.A., 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.Google Scholar
  31. Manning, R. B., C. W. Hart & T. M. Illiffe, 1986. Mesozoic relicts in marine caves of Bermuda. Stygologia 2: 156–166.Google Scholar
  32. Marmonier, P. 1988. Biocénoses interstitielles et circulation des eaux dans le sous-écoulement d'un chenal aménagé du Haut-Rhône français. Th. Doct. Univ. Lyon I, 2 vols., 161 p. & 108 p.Google Scholar
  33. Marmonier, P. & M.-J. Dole, 1986. Les amphipodes des sédiments d'un bras court-circuité du Rhône-Logique de répartition et réaction aux crues. Sciences de L'Eau 5: 461–486.Google Scholar
  34. Marmonier, P. & J. V. Ward, 1990. Superficial and interstitial Ostracoda of the South Platte river (Colorado, USA)— Systematics and biogeography. Stygologia 5: 225–239.Google Scholar
  35. Marmonier, P., M.-J. Dole-Olivier & M. Creuzé des Châtelliers, 1992. Spatial distribution of interstitial assemblages in the flood-plain of the Rhone River. Regulated rivers 7: 75–82.Google Scholar
  36. Niederreiter, R. & D. L. Danielopol, 1991. The use of mini- video-cameras for the description of groundwater habitats. Mitt. hydrogr. Dienst. Österr. 65/66: 85–89.Google Scholar
  37. Orghidan, T., 1959. Ein neuer Lebensraum des unterirdischen Wassers, das hyporheische Biotop. Arch. Hydrobiol. 55: 392–414.Google Scholar
  38. Palmer, M. A., 1990. Temporal and spatial dynamics of meiofauna within the hyporheic zone of Goose Creek, Virginia. J. N. Am. Benthol. Soc. 9: 17–25.Google Scholar
  39. Palmer, M. A., A. E. Bely & K. E. Berg, 1992. Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89: 182–194.Google Scholar
  40. Pearse, A. S., 1927. The migration of animals from the ocean into freshwater and land habitats. Am. Nat. 61: 466–476.Google Scholar
  41. Pennak, R. W., 1940. Ecology of the microscopic Metazoa inhabiting the sandy beaches of some Wisconsin lakes. Ecol. Monogr. 10: 537–615.Google Scholar
  42. Pennak, R. W., 1951. Comparative ecology of the interstitial fauna of fresh-water and marine beaches. Ann. Biol. 27: 449–480.Google Scholar
  43. Pennak, R. W., 1963. Ecological affinities and origins of free-living acelomate fresh-water invertebrates. In E. C. Dougherty et al. (eds), The Lower Metazoa. Univ. California Press, Berkeley: 435–451.Google Scholar
  44. Pennak, R. W., 1968. Historical origins and ramifications of interstitial investigations. Trans. am. Microsc. Soc. 87: 214–218.Google Scholar
  45. Pennak, R. W., 1988. Ecology of the freshwater meiofauna. In R. P. Higgins & H. Thiel (eds), Introduction to the Study of meiofauna. Smithsonian Inst. Press, Washington, D.C.: 39–60.Google Scholar
  46. Pennak, R. W. & J. V. Ward, 1986. Interstitial faunal communities of the hyporheic and adjacent groundwater biotopes of a Colorado mountain stream. Arch. Hydrobiol. Suppl. 74: 356–396.Google Scholar
  47. Rouch, R., 1988. Sur la répartition spatiale des Crustacés dans le sous-écoulement d'un ruisseau des Pyrénées. Annl. Limnol. 24: 213–234.Google Scholar
  48. Rouch, R. & D. L. Danielopol, 1987. L'origine de la faune aquatique souterraine, entre le paradigme du refuge et le modèle de la colonisation active. Stygologia 3: 345–372.Google Scholar
  49. Sambrook, J., E. F. Fritsch & T. Maniatis, 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 545 pp.Google Scholar
  50. Sassuchin, D. N., N. M. Kabanov & K. Neiswestnova-Shadina, 1927. Über die mikroskopische Pflanzen-und Tierwelt der Sandfläche der Okaufers bei Murom. Russ. Hydrobiol. Z. 6: 59–83.Google Scholar
  51. Schminke, H. K., 1981. Perspectives in the study of the zoogeography of interstitial crustacea: Bathynellacea (Syncarida) and Parastenocarididae (Copepoda). Int. J. Speleol. 11: 83–89.Google Scholar
  52. Schwoerbel, J., 1961. Über die Lebensbedingungen und die Besiedlung des hyporheischen lebensraumes. Arch. Hydrobiol. Suppl. 25: 182–214.Google Scholar
  53. Sogin, M. L., 1990. Amplification of ribosomal RNA genes for molecular evolution studies. In M. A. Innis et al. (eds), PCR Protocols: A Guide to Methods and Applications. Academic Press, New York: 307–314.Google Scholar
  54. Stanford, J. A. & J. V. Ward, 1988. The hyporheic habitat of river ecosystems. Nature 335: 64–66.Google Scholar
  55. Stock, J. H., 1986. Two new amphipod crustaceans of the genus Bahadzia from ‘blue holes’ in the Bahamas and some remarks on the origin of the insular stygofaunas of the Atlantic. J. Nat. Hist. 20: 921–933.Google Scholar
  56. Strommer, J. L. & L. A. Smock, 1989. Vertical distribution and abundance of invertebrates within the sandy substrate of a low-gradient headwater stream. Freshwat. Biol. 22: 263–274.Google Scholar
  57. Ward, J. V., 1989. The four-dimensional nature of lotic ecosystems. J. N. Am. Benthol. Soc. 8: 2–8.Google Scholar
  58. Ward, J. V., J. A. Stanford & N. J. Voelz, 1994. Spatial distribution patterns of Crustacea in the floodplain aquifer of an alluvial river. Hydrobiologia 287: 11–17.Google Scholar
  59. Ward, J. V. & N. J. Voelz, 1990. Gradient analysis of interstitial meiofauna along a longitudinal stream profile. Stygologia 5: 93–99.Google Scholar
  60. Ward, J. V. & N. J. Voelz, in press. Groundwater fauna of the South Platte river system, Colorado, USA. In J. Gibert, D. Danielopol & J. Stanford (eds), Groundwater Ecology. Academic Press, Orlando.Google Scholar
  61. Ward, J. V., N. J. Voelz, & N. L. Poff, 1994b. Gradient analysis of zoobenthos community structure along a mountain stream continuum. Verh. int. Ver. Limnol. in press.Google Scholar
  62. White, T., T. Burns, S. Lee & J. Taylor, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis (et al.) (eds), PCR Protocols: A Guide to Methods and Applications. Academic Press, New York: 315–322.Google Scholar
  63. Whitman, R. L. & W. J. Clark, 1984. Ecological studies of the sand-dwelling community of an east Texas stream. Freshwat. Invert. Biol. 3: 59–79.Google Scholar
  64. Wiens, J. A., 1989. Spatial scaling in ecology. Functional Ecol. 3: 385–397.Google Scholar
  65. Williams, D. D., 1989. Towards a biological and chemical definition of the hyporheic zone in two Canadian rivers. Freshwat. Biol. 22: 189–208.Google Scholar
  66. Williams, D. D. & H. B. N. Hynes, 1974. The occurrence of benthos deep in the substratum of a stream. Freshwat. Biol. 4: 233–256.Google Scholar
  67. Wiszniewski, J., 1934. Recherches écologiques sur le psammon. Arch. Hydrobiol. Ichthyol. 8: 149–272.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • J. V. Ward
    • 1
  • M. A. Palmer
    • 2
  1. 1.Department of BiologyColorado State UniversityFort CollinsUSA
  2. 2.Department of ZoologyUniversity of MarylandCollege ParkUSA

Personalised recommendations