, Volume 287, Issue 1, pp 119–129 | Cite as

World subterranean ostracod biogeography: dispersal or vicariance

  • D. L. Danielopol
  • P. Marmonier
  • A. J. Boulton
  • G. Bonaduce


Origins of the present day distribution of several freshwater and marine phyletic groups of ostracods are described using both Recent and fossil data. Six examples of subterranean ostracods distributed world-wide are discussed. The first two examples (i.e. the Candoninae Namibcypridini and the Sphaeromicolinae) seemed, in a first approach, to fit well with the ‘vicariance model’ but a detailed study demonstrate that their present day distribution can not be seen as a consequence of any geological events. The four other examples (the Xestoleberis arcturi species group, the Tuberoloxoconcha, the Cavernocypris and Fabaeformiscandona wegelini) fit well with the ‘dispersionist model’. We propose a biogeographical model similar to the dispersal one which foccus on the ecological processes occurring at local and/or regional scales. Some present day species or their epigean ancestors may originally have been more widely dispersed. These species were predisposed to colonize subsurface habitats; a process that could occur polytopically and at various times. It is the degree of ecological flexibility, the width of ecological tolerance, the type of preadaptations, and the capacity to perceive and successfully invade new environments that allow subsurface ostracods to migrate actively or be dispersed passively through both subterranean and epigean aquatic systems and to settle in new places. But no centers of origin and direction of dispersal can be identified in our data. There is little known about the autecology of subterranean ostracod taxa with broad geographical ranges. Samples should be collected at fine (habitat) and broad scales (regional surveys) so that we can better understand the modes of ostracod dispersal across a range of spatial scales.

Key words

Ostracoda biogeography ecology vicariance model dispersionist model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banarescu, P., 1990. Zoogeography of fresh waters. Vol. 1. Aula, Wiesbaden, 511 pp.Google Scholar
  2. Boulton, A. J., S. E. Stibbe, N. B. Grimm & S. G. Fisher, 1991. Invertebrate recolonisation of small patches of defaunated hyporheic sediments in a Sonoran desert stream. Freshwat. Biol. 26: 267–277.Google Scholar
  3. Boulton, A. J., H. M. Valett & S. G. Fisher, 1992. Spatial distribution and taxonomic composition of the hyporheos of several Sonoran Desert streams. Arch. Hydrobiol. 125: 37–61.Google Scholar
  4. Broodbakker, N., 1983. The subfamily Candoninae (Crustacea, Ostracoda) in the West indies. Bijdr. Dierk. 53: 287–326.Google Scholar
  5. Broodbakker, N., 1984. The distribution and zoogeography of freshwater Ostracoda in the West Indies. Bijdr. Dierk. 54: 25–50.Google Scholar
  6. Craw, R. & R. Page, 1988. Panbiogeography: method and metaphor in the new biogeography. In H. W. Ho and S. W. Fox (eds.), Evolutionary Processes and Metaphors. Wiley & Sons, Chichester: 163–190.Google Scholar
  7. Christiansen, K. & D. C. Culver, 1987. Biogeography and the distribution of cave Collembola. J. Biogeogr. 14: 459–477.Google Scholar
  8. Christie, D. M., R. A. Duncan, A. R. Mc Birney, M. A. Richards, W. M. White, K. S. Harp & C. G. Fox, 1992. Drowned islands downstream from the Galapagos hotspot imply extended speciation times. Nature 355: 246–248.Google Scholar
  9. Croizat, L, 1978. Deduction, induction and biogeography. Syst. Zool. 27: 209–213.Google Scholar
  10. Danielopol, D. L., 1977. Recherches sur les Ostracodes Entocytheridae. Données sur Sphaeromicola cebennica juberthiei nov. ssp. et Sphaeromicola cirolanae Rioja. Int. J. Speleol. 9: 21–41.Google Scholar
  11. Danielopol, D. L., 1980. An essay to assess the age of the freshwater interstitial ostracods of Europe. Bijdr. Dierk. 50: 243–291.Google Scholar
  12. Danielopol, D. L., 1983. Der Einfluss organischer Verschmutzung auf das Grundwasser-Ökosystem der Donau im Raum Wien und Niederösterreich. Forschungsberichte BMGU 5: 5–159.Google Scholar
  13. Danielopol, D. L., 1991. Spatial distribution and dispersal of interstitial Crustacea in alluvial sediments of a backwater of the Danube at Vienna. Stygologia 6: 97–110.Google Scholar
  14. Danielopol, D. L. & G. Bonaduce, 1990a. The colonisation of subsurface habitats by the Loxoconchidae Sars and the Psammocytheridae Klie. In R. Whatley & C. Maybury (eds), Ostracoda and Global Events. Chapman & Hall, London: 437–458.Google Scholar
  15. Danielopol, D. L. & G. Bonaduce, 1990b. Origin and distribution of the interstitial species group Xestoleberis arcturi Triebel (Ostracoda, Crustacea). Cour. Forsch. -Inst. Senckenberg 123: 69–86.Google Scholar
  16. Danielopol, D. L. & C. W. Hart, 1985. Notes on the center of origin and the antiquity of the Sphaeromicolinae, with description of Hobbsiella, new genus (Ostracoda, Entocytheridae). Stygologia 1: 54–70.Google Scholar
  17. Danielopol, D. L. & G. Hartmann, 1986. Ostracoda. In L. Botosaneanu (ed.), Stygofauna Mundi. E. S. Brill, Leiden: 259–294.Google Scholar
  18. Danielopol, D. L., W. E. Piller & T. Huber, 1991. Pseudolimnocythere hainburgensis n. sp. (Ostracoda, Loxoconchidae) aus Wiener Beckens. N. Jb. Geol. Paläont. Mh. 8: 458–469.Google Scholar
  19. Danielopol, D. L. & R. Rouch, 1991. L'adaptation des organismes au milieu aquatique souterrain. Réflexions sur l'apport des recherches écologiques récentes. Stygologia 6: 129–142.Google Scholar
  20. Danielopol, D. L. & K. Wouters, 1992. Evolutionary (Paleo)biology of marine interstitial ostracods. Geobios 25: 207–211.Google Scholar
  21. Darlington, P. J., 1957. Zoogeography: the geographical distribution of animals. Wiley & Sons, New York, 675 pp.Google Scholar
  22. Forester, R. M., 1991. Ostracode assemblages from springs in the western United States: implication for paleophydrology. Mem. ent. Soc. Can. 155: 181–201.Google Scholar
  23. Grimm, N. B. & S. G. Fischer, 1989. Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. J. N. Am. Benthol. Soc. 8: 293–307.Google Scholar
  24. Hart, C. W., 1978. A new species of the genus Sphaeromicola (Ostracoda, Entocytheridae, Sphaeromicolinae) from Texas, with notes on relationships between European and North American species. Proc. biol. Soc. Wash. 91: 724–730.Google Scholar
  25. Hagerman, G. H. & R. M. Rieger, 1981. Dispersal of benthic meiofauna by wave and current action in Bogne Sound, North Carolina, USA. P. S. Z. N. I. Mar. Ecol. 2: 245–270.Google Scholar
  26. Hobbs, H. H., Jr., 1971. The enthocytherid ostracods of Mexico and Cuba. Smithson. Contr. Zool. 81: 1–55.Google Scholar
  27. Holsinger, J. & G. Longley, 1980. The subterranean amphipod crustacean fauna of an artesian well in Texas. Smithson. Contr. Zool. 308: 1–162.Google Scholar
  28. Horne, D., 1989. On Tuberoloxoconcha atlantica sp. nov. Stereo-atlas Ostracod Shells 16: 73–76.Google Scholar
  29. Humphries, C. J. & L. R. Parenti, 1986. Cladistic biogeography. Clarendon Press, London, 98 pp.Google Scholar
  30. Hsu, K. J., 1978. When the Black Sea was drained. Scien. Am. 238: 53–62.Google Scholar
  31. Jokiel, P. L., 1990. Long-distance dispersal by rafting: reemergence of an old hypothesis. Endeavour 14: 66–73.Google Scholar
  32. Kern, J. C. & G. L. Taghon, 1986. Can passive recruitment explain harpacticoid copepod distributions in relation to epibenthic structure? J. exp. mar. Biol. Ecol. 101: 1–23.Google Scholar
  33. Lattin, G., 1967. Grundriss der Zoogeographie. G. Fischer, Jena, 602 pp.Google Scholar
  34. Loffler, H. & J. Leibetseder, 1965. Daten zur Dauer des Darmdurchganges bei Vögeln. Zool. Anz. 177: 334–340.Google Scholar
  35. Maddocks, R. F., 1982. Ostracoda. In L. G. Abele (ed.), The Biology of Crustacea, Vol. 1: Systematics, the fossil Record and Biogeography. Academic Press, New York: 221–239.Google Scholar
  36. Maddocks, R. F. & T. M. Illife, 1991. Anchialine podocopid Ostracoda of Galapagos Islands. Zool. J. Linn. Soc. 103: 75–99.Google Scholar
  37. Marmonier, P., 1985. Répartition spatiale des Ostracodes dans les sédiments d'un ruisseau alpin (le Seebach à Lunz, Autriche). Verh. int. Verein. Limnol. 22: 2053–2057.Google Scholar
  38. Marmonier, P., 1988. Biocénoses interstitielles et circulation des eaux dans le sous-écoulement d'un chenal aménagé du Haut Rhône français. Th. Doct. Univ. Lyon 1, 2 vol.: 1–161, 1–108.Google Scholar
  39. Marmonier, P., 1991. Effect of alluvial shift on the spatial distribution of interstitial fauna. Verh. int. Verein. Limnol. 24: 1613–1616.Google Scholar
  40. Marmonier, P. & M. Creuzé des Châtelliers, 1992. Biogeography of the benthic and interstitial living ostracods (Crustacea) of the Rhône River (France). J. Biogeogr. 19: 694–704.Google Scholar
  41. Marmonier, P., C. Meisch, & D. L. Danielopol, 1989. A review of the genus Cavernocypris Hartmann (Ostracoda, Cypridopsinae): systematics, ecology and biogeography. Bull. Soc. Nat. Luxemb. 89: 221–278.Google Scholar
  42. Marmonier, P. & J. V. Ward, 1990. Superficial and interstitial ostracods of the South Platte River (Colorado, USA). Systematics and biogeography. Stygologia 5: 225–239.Google Scholar
  43. Martens, K., 1992. On Namibcypris costata n. gen. n. sp. (Crustacea, Ostracoda, Candoninae) from a spring in northern Namibia, with the description of a new tribe and a discussion on the classification of the Podocopina. Stygologia 7: 27–42.Google Scholar
  44. McKenzie, K. G., 1991. Implications of shallow Tethys and the origin of modern oceans. Aust. Syst. Bot. 4: 37–40.Google Scholar
  45. Myers, A., 1988. Endemism in Hawaiian marine invertebrates. TREE 3: 20–21.Google Scholar
  46. Palmer, M. A., 1988. Dispersal of marine meiofauna: a review and conceptual model explaining passive transport and active emergence with implications for recruitment. Mar. Ecol. Prog. Ser. 48: 81–91.Google Scholar
  47. Palmer, M. A., 1990. Understanding the movement dynamics of a stream dwelling meiofauna community using marine analogs. Stygologia 5: 67–74.Google Scholar
  48. Palmer, M. A., 1992. Incorporating lotic meiofauna into our understanding of faunal transport processes. Limnol. Oceanogr. 37: 329–341.Google Scholar
  49. Palmer, M. A., A. E. Bely & K. E. Berg, 1992. Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89: 182–194.Google Scholar
  50. Reyment, R., 1983. West african and north american transgressional maxima and the dispersal of benthic organisms. J. Afr. Earth. Sci. 1: 255–262.Google Scholar
  51. Roca, J. & D. L. Danielopol, 1991. Exploration of interstitial habitats by the phytophilous ostracod Cypridopsis vidua (O. F. Müller): experimental evidence. Annls. Limnol. 27: 243–252.Google Scholar
  52. Rogulj, B., P. Marmonier, R. Lattinger & D. L. Danielopol, 1994. Fine-scale distribution of hypogean Ostracoda in the interstitial habitats of the Rivers Sava and Rhône. Hydrobiologia 287: 19–28.Google Scholar
  53. Rosen, D. E., 1978. Vicariant patterns and historical explanation in biogeography. Syst. Zool. 27: 159–188.Google Scholar
  54. Schram, F. R., 1986. Crustacea. Oxford Univ. Press, New York, 606 pp.Google Scholar
  55. Sohn, I. G. & L. S. Kornicker, 1979. Viability of freeze-dried eggs of the freshwater Heterocypris incongruens. In N. Kristic (ed.), Taxonomy, Biogeography and Distribution of Ostracodes. Serbian Geol. Soc. Belgrade: 1–4.Google Scholar
  56. Stock, J. H., 1980. Regression model evolution as exemplified by the genus Pseudoniphargus (Amphipoda). Bijdr. Dierk. 50: 105–144.Google Scholar
  57. Stock, J. H., 1990. Insular groundwater biotas in the (sub)tropical Atlantic: a biogeographic synthesis. Atti Convegni Acad. do Lincei 85: 695–713.Google Scholar
  58. Tilzer, M., 1973. Zum problem der Ausbreitungsfähigkeit von limnisch-interstitiellen Grundwassertieren am Beispiel von Troglochaetus beranecki Delacheaux (Polychaeta, Arachianelida). Arch. Hydrobiol. 72: 263–269.Google Scholar
  59. Vallet, H. M., S. G. Fisher & E. H. Stanley, 1990. Physical and chemical characteristics of the hyporheic zone of a Sonoran desert stream. J. N. Am. Benthol. Soc. 9: 201–215.Google Scholar
  60. Weissleader, L. S., N. L. Gilinsky, R. M. Ross & T. M. Cronin, 1989. Biogeography of marine podocopid ostracodes in Micronesia. J. Biogeogr. 16: 103–114.Google Scholar
  61. Westheide, W., 1991. The meiofauna of the Galapagos. In M. J. James (ed.), Galapagos Marine Invertebrates. Taxonomy, biogeography and evolution in Darwin's Islands. Plenum Press, New York: 37–73.Google Scholar
  62. Witte, L. & D. Van Harten, 1991. Polymorphism, biogeography and systematics of Kotoracythere inconspicua (Brady, 1980) (Ostracoda: Pectocytheridae). J. Biogeogr. 18: 427–436.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • D. L. Danielopol
    • 1
  • P. Marmonier
    • 2
  • A. J. Boulton
    • 3
  • G. Bonaduce
    • 4
  1. 1.Limnological Institute, Austrian Academy of SciencesMondseeAustria
  2. 2.Department of EcologyUniversity of SavoieLe Bourget du LacFrance
  3. 3.Department of ZoologyUniversity of AdelaideAdelaideAustralia
  4. 4.Paleontological InstituteUniversity ‘Federico 2’ of NaplesNaplesItaly

Personalised recommendations