Skip to main content
Log in

World subterranean ostracod biogeography: dispersal or vicariance

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Origins of the present day distribution of several freshwater and marine phyletic groups of ostracods are described using both Recent and fossil data. Six examples of subterranean ostracods distributed world-wide are discussed. The first two examples (i.e. the Candoninae Namibcypridini and the Sphaeromicolinae) seemed, in a first approach, to fit well with the ‘vicariance model’ but a detailed study demonstrate that their present day distribution can not be seen as a consequence of any geological events. The four other examples (the Xestoleberis arcturi species group, the Tuberoloxoconcha, the Cavernocypris and Fabaeformiscandona wegelini) fit well with the ‘dispersionist model’. We propose a biogeographical model similar to the dispersal one which foccus on the ecological processes occurring at local and/or regional scales. Some present day species or their epigean ancestors may originally have been more widely dispersed. These species were predisposed to colonize subsurface habitats; a process that could occur polytopically and at various times. It is the degree of ecological flexibility, the width of ecological tolerance, the type of preadaptations, and the capacity to perceive and successfully invade new environments that allow subsurface ostracods to migrate actively or be dispersed passively through both subterranean and epigean aquatic systems and to settle in new places. But no centers of origin and direction of dispersal can be identified in our data. There is little known about the autecology of subterranean ostracod taxa with broad geographical ranges. Samples should be collected at fine (habitat) and broad scales (regional surveys) so that we can better understand the modes of ostracod dispersal across a range of spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banarescu, P., 1990. Zoogeography of fresh waters. Vol. 1. Aula, Wiesbaden, 511 pp.

    Google Scholar 

  • Boulton, A. J., S. E. Stibbe, N. B. Grimm & S. G. Fisher, 1991. Invertebrate recolonisation of small patches of defaunated hyporheic sediments in a Sonoran desert stream. Freshwat. Biol. 26: 267–277.

    Google Scholar 

  • Boulton, A. J., H. M. Valett & S. G. Fisher, 1992. Spatial distribution and taxonomic composition of the hyporheos of several Sonoran Desert streams. Arch. Hydrobiol. 125: 37–61.

    Google Scholar 

  • Broodbakker, N., 1983. The subfamily Candoninae (Crustacea, Ostracoda) in the West indies. Bijdr. Dierk. 53: 287–326.

    Google Scholar 

  • Broodbakker, N., 1984. The distribution and zoogeography of freshwater Ostracoda in the West Indies. Bijdr. Dierk. 54: 25–50.

    Google Scholar 

  • Craw, R. & R. Page, 1988. Panbiogeography: method and metaphor in the new biogeography. In H. W. Ho and S. W. Fox (eds.), Evolutionary Processes and Metaphors. Wiley & Sons, Chichester: 163–190.

    Google Scholar 

  • Christiansen, K. & D. C. Culver, 1987. Biogeography and the distribution of cave Collembola. J. Biogeogr. 14: 459–477.

    Google Scholar 

  • Christie, D. M., R. A. Duncan, A. R. Mc Birney, M. A. Richards, W. M. White, K. S. Harp & C. G. Fox, 1992. Drowned islands downstream from the Galapagos hotspot imply extended speciation times. Nature 355: 246–248.

    Google Scholar 

  • Croizat, L, 1978. Deduction, induction and biogeography. Syst. Zool. 27: 209–213.

    Google Scholar 

  • Danielopol, D. L., 1977. Recherches sur les Ostracodes Entocytheridae. Données sur Sphaeromicola cebennica juberthiei nov. ssp. et Sphaeromicola cirolanae Rioja. Int. J. Speleol. 9: 21–41.

    Google Scholar 

  • Danielopol, D. L., 1980. An essay to assess the age of the freshwater interstitial ostracods of Europe. Bijdr. Dierk. 50: 243–291.

    Google Scholar 

  • Danielopol, D. L., 1983. Der Einfluss organischer Verschmutzung auf das Grundwasser-Ökosystem der Donau im Raum Wien und Niederösterreich. Forschungsberichte BMGU 5: 5–159.

    Google Scholar 

  • Danielopol, D. L., 1991. Spatial distribution and dispersal of interstitial Crustacea in alluvial sediments of a backwater of the Danube at Vienna. Stygologia 6: 97–110.

    Google Scholar 

  • Danielopol, D. L. & G. Bonaduce, 1990a. The colonisation of subsurface habitats by the Loxoconchidae Sars and the Psammocytheridae Klie. In R. Whatley & C. Maybury (eds), Ostracoda and Global Events. Chapman & Hall, London: 437–458.

    Google Scholar 

  • Danielopol, D. L. & G. Bonaduce, 1990b. Origin and distribution of the interstitial species group Xestoleberis arcturi Triebel (Ostracoda, Crustacea). Cour. Forsch. -Inst. Senckenberg 123: 69–86.

    Google Scholar 

  • Danielopol, D. L. & C. W. Hart, 1985. Notes on the center of origin and the antiquity of the Sphaeromicolinae, with description of Hobbsiella, new genus (Ostracoda, Entocytheridae). Stygologia 1: 54–70.

    Google Scholar 

  • Danielopol, D. L. & G. Hartmann, 1986. Ostracoda. In L. Botosaneanu (ed.), Stygofauna Mundi. E. S. Brill, Leiden: 259–294.

    Google Scholar 

  • Danielopol, D. L., W. E. Piller & T. Huber, 1991. Pseudolimnocythere hainburgensis n. sp. (Ostracoda, Loxoconchidae) aus Wiener Beckens. N. Jb. Geol. Paläont. Mh. 8: 458–469.

    Google Scholar 

  • Danielopol, D. L. & R. Rouch, 1991. L'adaptation des organismes au milieu aquatique souterrain. Réflexions sur l'apport des recherches écologiques récentes. Stygologia 6: 129–142.

    Google Scholar 

  • Danielopol, D. L. & K. Wouters, 1992. Evolutionary (Paleo)biology of marine interstitial ostracods. Geobios 25: 207–211.

    Google Scholar 

  • Darlington, P. J., 1957. Zoogeography: the geographical distribution of animals. Wiley & Sons, New York, 675 pp.

    Google Scholar 

  • Forester, R. M., 1991. Ostracode assemblages from springs in the western United States: implication for paleophydrology. Mem. ent. Soc. Can. 155: 181–201.

    Google Scholar 

  • Grimm, N. B. & S. G. Fischer, 1989. Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. J. N. Am. Benthol. Soc. 8: 293–307.

    Google Scholar 

  • Hart, C. W., 1978. A new species of the genus Sphaeromicola (Ostracoda, Entocytheridae, Sphaeromicolinae) from Texas, with notes on relationships between European and North American species. Proc. biol. Soc. Wash. 91: 724–730.

    Google Scholar 

  • Hagerman, G. H. & R. M. Rieger, 1981. Dispersal of benthic meiofauna by wave and current action in Bogne Sound, North Carolina, USA. P. S. Z. N. I. Mar. Ecol. 2: 245–270.

    Google Scholar 

  • Hobbs, H. H., Jr., 1971. The enthocytherid ostracods of Mexico and Cuba. Smithson. Contr. Zool. 81: 1–55.

    Google Scholar 

  • Holsinger, J. & G. Longley, 1980. The subterranean amphipod crustacean fauna of an artesian well in Texas. Smithson. Contr. Zool. 308: 1–162.

    Google Scholar 

  • Horne, D., 1989. On Tuberoloxoconcha atlantica sp. nov. Stereo-atlas Ostracod Shells 16: 73–76.

    Google Scholar 

  • Humphries, C. J. & L. R. Parenti, 1986. Cladistic biogeography. Clarendon Press, London, 98 pp.

    Google Scholar 

  • Hsu, K. J., 1978. When the Black Sea was drained. Scien. Am. 238: 53–62.

    Google Scholar 

  • Jokiel, P. L., 1990. Long-distance dispersal by rafting: reemergence of an old hypothesis. Endeavour 14: 66–73.

    Google Scholar 

  • Kern, J. C. & G. L. Taghon, 1986. Can passive recruitment explain harpacticoid copepod distributions in relation to epibenthic structure? J. exp. mar. Biol. Ecol. 101: 1–23.

    Google Scholar 

  • Lattin, G., 1967. Grundriss der Zoogeographie. G. Fischer, Jena, 602 pp.

    Google Scholar 

  • Loffler, H. & J. Leibetseder, 1965. Daten zur Dauer des Darmdurchganges bei Vögeln. Zool. Anz. 177: 334–340.

    Google Scholar 

  • Maddocks, R. F., 1982. Ostracoda. In L. G. Abele (ed.), The Biology of Crustacea, Vol. 1: Systematics, the fossil Record and Biogeography. Academic Press, New York: 221–239.

    Google Scholar 

  • Maddocks, R. F. & T. M. Illife, 1991. Anchialine podocopid Ostracoda of Galapagos Islands. Zool. J. Linn. Soc. 103: 75–99.

    Google Scholar 

  • Marmonier, P., 1985. Répartition spatiale des Ostracodes dans les sédiments d'un ruisseau alpin (le Seebach à Lunz, Autriche). Verh. int. Verein. Limnol. 22: 2053–2057.

    Google Scholar 

  • Marmonier, P., 1988. Biocénoses interstitielles et circulation des eaux dans le sous-écoulement d'un chenal aménagé du Haut Rhône français. Th. Doct. Univ. Lyon 1, 2 vol.: 1–161, 1–108.

  • Marmonier, P., 1991. Effect of alluvial shift on the spatial distribution of interstitial fauna. Verh. int. Verein. Limnol. 24: 1613–1616.

    Google Scholar 

  • Marmonier, P. & M. Creuzé des Châtelliers, 1992. Biogeography of the benthic and interstitial living ostracods (Crustacea) of the Rhône River (France). J. Biogeogr. 19: 694–704.

    Google Scholar 

  • Marmonier, P., C. Meisch, & D. L. Danielopol, 1989. A review of the genus Cavernocypris Hartmann (Ostracoda, Cypridopsinae): systematics, ecology and biogeography. Bull. Soc. Nat. Luxemb. 89: 221–278.

    Google Scholar 

  • Marmonier, P. & J. V. Ward, 1990. Superficial and interstitial ostracods of the South Platte River (Colorado, USA). Systematics and biogeography. Stygologia 5: 225–239.

    Google Scholar 

  • Martens, K., 1992. On Namibcypris costata n. gen. n. sp. (Crustacea, Ostracoda, Candoninae) from a spring in northern Namibia, with the description of a new tribe and a discussion on the classification of the Podocopina. Stygologia 7: 27–42.

    Google Scholar 

  • McKenzie, K. G., 1991. Implications of shallow Tethys and the origin of modern oceans. Aust. Syst. Bot. 4: 37–40.

    Google Scholar 

  • Myers, A., 1988. Endemism in Hawaiian marine invertebrates. TREE 3: 20–21.

    Google Scholar 

  • Palmer, M. A., 1988. Dispersal of marine meiofauna: a review and conceptual model explaining passive transport and active emergence with implications for recruitment. Mar. Ecol. Prog. Ser. 48: 81–91.

    Google Scholar 

  • Palmer, M. A., 1990. Understanding the movement dynamics of a stream dwelling meiofauna community using marine analogs. Stygologia 5: 67–74.

    Google Scholar 

  • Palmer, M. A., 1992. Incorporating lotic meiofauna into our understanding of faunal transport processes. Limnol. Oceanogr. 37: 329–341.

    Google Scholar 

  • Palmer, M. A., A. E. Bely & K. E. Berg, 1992. Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89: 182–194.

    Google Scholar 

  • Reyment, R., 1983. West african and north american transgressional maxima and the dispersal of benthic organisms. J. Afr. Earth. Sci. 1: 255–262.

    Google Scholar 

  • Roca, J. & D. L. Danielopol, 1991. Exploration of interstitial habitats by the phytophilous ostracod Cypridopsis vidua (O. F. Müller): experimental evidence. Annls. Limnol. 27: 243–252.

    Google Scholar 

  • Rogulj, B., P. Marmonier, R. Lattinger & D. L. Danielopol, 1994. Fine-scale distribution of hypogean Ostracoda in the interstitial habitats of the Rivers Sava and Rhône. Hydrobiologia 287: 19–28.

    Google Scholar 

  • Rosen, D. E., 1978. Vicariant patterns and historical explanation in biogeography. Syst. Zool. 27: 159–188.

    Google Scholar 

  • Schram, F. R., 1986. Crustacea. Oxford Univ. Press, New York, 606 pp.

    Google Scholar 

  • Sohn, I. G. & L. S. Kornicker, 1979. Viability of freeze-dried eggs of the freshwater Heterocypris incongruens. In N. Kristic (ed.), Taxonomy, Biogeography and Distribution of Ostracodes. Serbian Geol. Soc. Belgrade: 1–4.

  • Stock, J. H., 1980. Regression model evolution as exemplified by the genus Pseudoniphargus (Amphipoda). Bijdr. Dierk. 50: 105–144.

    Google Scholar 

  • Stock, J. H., 1990. Insular groundwater biotas in the (sub)tropical Atlantic: a biogeographic synthesis. Atti Convegni Acad. do Lincei 85: 695–713.

    Google Scholar 

  • Tilzer, M., 1973. Zum problem der Ausbreitungsfähigkeit von limnisch-interstitiellen Grundwassertieren am Beispiel von Troglochaetus beranecki Delacheaux (Polychaeta, Arachianelida). Arch. Hydrobiol. 72: 263–269.

    Google Scholar 

  • Vallet, H. M., S. G. Fisher & E. H. Stanley, 1990. Physical and chemical characteristics of the hyporheic zone of a Sonoran desert stream. J. N. Am. Benthol. Soc. 9: 201–215.

    Google Scholar 

  • Weissleader, L. S., N. L. Gilinsky, R. M. Ross & T. M. Cronin, 1989. Biogeography of marine podocopid ostracodes in Micronesia. J. Biogeogr. 16: 103–114.

    Google Scholar 

  • Westheide, W., 1991. The meiofauna of the Galapagos. In M. J. James (ed.), Galapagos Marine Invertebrates. Taxonomy, biogeography and evolution in Darwin's Islands. Plenum Press, New York: 37–73.

    Google Scholar 

  • Witte, L. & D. Van Harten, 1991. Polymorphism, biogeography and systematics of Kotoracythere inconspicua (Brady, 1980) (Ostracoda: Pectocytheridae). J. Biogeogr. 18: 427–436.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

U.A. CNRS N° 1451 ‘Ecologie des Eaux Douces et des Grands Fleuves’

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danielopol, D.L., Marmonier, P., Boulton, A.J. et al. World subterranean ostracod biogeography: dispersal or vicariance. Hydrobiologia 287, 119–129 (1994). https://doi.org/10.1007/BF00006901

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006901

Key words

Navigation