, Volume 284, Issue 2, pp 157–168 | Cite as

Short term toxicity of iron (Fe) and lead (Pb) to the mayfly Leptophlebia marginata (L.) (Insecta) in relation to freshwater acidification

  • A. Gerhardt


The mayfly Leptophlebia marginata was exposed to different concentrations of Fe2+ or Pb2+ at pH 4.5 and pH 7.0. The effects of the metals on escape behavior and survival of the mayflies were investigated during an exposure of 120 hours.

  1. (1)

    Whole-body metal loads (Fe; Pb) of the mayflies increased in a dose-dependent way at both pH levels. A significant effect of pH on metal concentration in the mayflies was only found for Pb (p < 0.001).

  2. (2)

    In terms of mortality, both metals were more toxic at pH 4.5 than at pH 7. The 96 h-LC50 values for Fe were 106.3 mg Fe l-1 at pH 7 and 89.5 mg Fe l-1 at pH 4.5. Those for Pb were > 5 mg Pb l-1 at pH 7 and 1.09 mg Pb l-1 at pH 4.5.

  3. (3)

    The mayflies lost their escape behavior, when exposed to the metals, the effects being more pronounced at low than at circumneutral pH for both metals (p < 0.05). The 96 h-EC50 values for Fe were 70.0 mg Fe l-1 at pH 7 and 63.9 mg Fe l-1 at pH 4.5.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, B. G., 1944. The toxicity thresholds of various substances found in industrial wastes as determined by the use of D. magna. Sewage Works J. 16: 1156–1165.Google Scholar
  2. Beeby, A., 1991. Toxic Metal Uptake and Essential Metal Regulation in Terrestrial Invertebrates: A Review.—In Newman, M. C. & McIntosh, A. W.: Metal Ecotoxicology. Concepts and Applications. Lewis Publishers, Chapt. 3.Google Scholar
  3. Beitinger, T. L., 1990. Behavioral reactions for the assessment of stress in fishes. J. Great Lakes Res. 16: 495–528.Google Scholar
  4. Campbell, P. G. C. & P. M. Stokes, 1985. Acidification and toxicity of metals to aquatic biota. J. Fish. aquat. Sci. 42: 2034–2049.Google Scholar
  5. Dave, G., 1985. The Influence of pH on the toxicity of Al, Cd and Fe to Eggs and Larvae of Zebrafish, Brachydanio rerio. Ecotox. Envir. Saf. 10: 253–267.Google Scholar
  6. Gerhardt, A, 1990. Effects of subacute doses of cadmium on pH-stressed Leptophlebia marginata (L.) and Baetis rhodani Pictet (Insecta: Ephemeroptera). Envir. Pollut. 67: 29–42.Google Scholar
  7. Gerhardt, A., 1992a. Effects of subacute doses of iron (Fe) on Leptophlebia marginata (Insecta: Ephemeroptera). Freshwat. Biol. 27: 79–84.Google Scholar
  8. Gerhardt, A., 1992b. Acute toxicity of Cd in stream invertebrates in relation to pH and test design. Hydrobiologia 239: 93–100.Google Scholar
  9. Gerhardt, A., 1993. Review of impact of heavy metals on stream invertebrates with special emphasis on acid conditions. Wat. Air Soil Pollut., 66: 289–314.Google Scholar
  10. Jørgensen, S. E., S. N. Nielsen & L. A. Jørgensen, 1991. Handbook of ecological parameters and ecotoxicology. Elsevier, Amsterdam.Google Scholar
  11. Hare, L., E. Saouter, P. G. C. Campbell, A. Tessier, F. Ribeyre, & A. Boudou, 1991. Dynamics of cadmium, lead, and zinc exchange between nymphs of the burrowing mayfly Hexagenia rigida (Ephemeroptera) and the environment. Can. J. Fish. aquat. Sci. 48, 39.Google Scholar
  12. Hare, L., 1992. Aquatic Insects and Trace Metals: Bioavailability, Bioaccumulation, and Toxicity. Critical Reviews in Toxicology 22: 327–369.Google Scholar
  13. Huebers, H. A., 1991. Iron. In: Merian, E. (ed.): Metals and their compounds in the environment. Chapt. II. 14: 945–958.Google Scholar
  14. Kirk, G. J. D., A. R. Ahmad & P. H. Nye, 1990. Coupled diffusion and oxidation of ferrous iron in soils. 2. A model of the diffusion and reaction of O2, Fe2+, H+ and HCO3- in soils and a sensitivity analysis of the model. J. Soil Science 41: 411–431.Google Scholar
  15. Kjellberg, G. 1972. Autekologiska studier över Leptophlebia vespertina (Ephemeroptera) i en mindre skogstjärn 1966–1968. Entomol. Tidskrift 93, 1–3: 1–29.Google Scholar
  16. Krantzberg, G. & P. M. Stokes, 1988. The importance of surface adsorption and pH in metal accumulation by chironomids. Envir. Toxicol. Chem. 7: 653–670.Google Scholar
  17. Locke, M. & H. Nichol, 1992. Iron Economy in Insects: Transport, Metabolism and Storage. Ann. Rev. Ent. 37: 195–215.Google Scholar
  18. Mackie, G. L., 1986. Tolerances of 5 benthic invertebrates to hydrogen ions and metals. Arch. envir. Contam. Toxicol. 18: 215–223.Google Scholar
  19. McKnight, D. M. & K. E. Bencala, 1990. The Chemistry of Iron, Aluminium, and Dissolved Organic Material in Three Acidic, Metal-Enriched, Mountain Streams, as Controlled by Watershed and in-Stream Processes. Wat. Res. Res. 26: 3087–3100.Google Scholar
  20. Maltby, L., J. O. H. Snart & P. Calow, 1987. Acute Toxicity Tests on the Freshwater Isopod Asellus aquaticus using FeSO4 × 7H2O with specific reference to techniques and the possibility of intraspecific variation. Envir. Pollut. 43: 271–279.Google Scholar
  21. Manly, B. F. J., 1991. Randomisation and Monte Carlo Methods. Chapman & Hall, London.Google Scholar
  22. Nelson, W. O. & P. G. C. Campbell, 1991. The effects of acidification on the geochemistry of Al, Cd, Pb and Hg in freshwater environments: A literature review. Envir. Pollut. 71: 91–130.Google Scholar
  23. Nyman, H. G., 1981. Sublethal effects of Pb on the size selective predation by fish-applications on the ecosystem level. Verh. Int. Ver. Limnol. 21: 1126–1130.Google Scholar
  24. Økland, J. & K. A. Økland, 1986. The effects of acid deposition on benthic animals in lakes and streams. Experientia 42: 471–486.Google Scholar
  25. Oladimeji, A. A. & B. O. Offem, 1989. Toxicity of lead to Claris lazera, Oreochromis niloticus, Chironomus tentans and Benacus sp. Wat. Air Soil Pollut. 44: 191–201.Google Scholar
  26. Shaw, P. J., H. De Haan & R. I. Jones, 1992. The effect of acidification on abiotic interactions of dissolved humic substances, iron and phosphate in epilimnetic water from the Humex Lake Skjervatjern. Envir. Int. 18: 577–588.Google Scholar
  27. Siegel, S. & N. J. Castellan, Jr. 1988. Nonparametric Statistics for the Behavioral Sciences. 2nd edn. McGraw-Hill Book Company, New York.Google Scholar
  28. Steele, C. W., S. Strickler-Shaw & D. H. Taylor, 1989. Behavior of tadpoles of the bullfrog, Rana catesbeiana, in response to sublethal lead exposure. Aquat. Toxicol. 14: 331–344.Google Scholar
  29. Tessier, A., P. G. C. Campbell, J. C. Auclair & M. Bisson, 1984. Relationships between the partitioning of trace metals in sediments and their accumulation in the tissues of the freshwater mollusk Elliptio complanata in a mining area. Can. J. Fish. Aquat. Sci. 41(10): 1463–1472.Google Scholar
  30. Updegraff, K. F. & J. L. Sykora, 1976. Avoidance of limeneutralized iron hydroxide solution by cocho salmon in the laboratory. Envir. Sci. Technol. 10: 51–54.Google Scholar
  31. Vighi, M., 1981. Lead uptake and release in an experimental trophic chain. Ecotox. Environ. Saf. 5: 177–193.Google Scholar
  32. Walter, G., 1966. Ökologische Untersuchungen über die Wirkung Fe-II-haltiger Braunkohlegruben-Abwässer auf Vorfluterorganismen. Wiss. Z. Karl-Marx Univ. Leipzig 1: 247–269.Google Scholar
  33. Warner, R., 1967. Bioassays for microchemical environmental contaminants with special reference to water supplies. Bull. W. H. O. 36: 181–207.Google Scholar
  34. Weber, E., 1986. Grundriss der biologischen Statistik. Fischer, Jena.Google Scholar
  35. Wren, C. D. & G. L. Stephenson, 1991. The effect of acidification on the accumulation and toxicity of metals to freshwater invertebrates. Envir. Pollut. 71: 205–241.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • A. Gerhardt
    • 1
  1. 1.Dept of Ecology, EcotoxicologyLund UniversityLundSweden

Personalised recommendations