, Volume 202, Issue 3, pp 153–170

Ordination analysis and bioindices based on zoobenthos communities used to assess pollution of a lake in southern Finland

  • Pekka H. Kansanen
  • Lauri Paasivirta
  • Tarja Väyrynen


The suitability of an ordination method, detrended correspondence analysis (DCA), was tested in assessing the degree of pollution of a large lake on the basis of the zoobenthos communities. Lake Etelä-Saimaa, in southern Finland, was originally oligotrophic but is now heavily loaded by effluents from the wood-processing industry. Comparison between areas was complicated by variation in the water depths of the lake sub-basins. A horizontal pollution gradient could, however, easily be detected by means of the DCA in both the profundal and sublittoral zones. The benthic quality index (BQI) based on the composition of the profundal chironomid fauna failed at some stations because the indicator species were lacking, despite enlargement of the indicator species pool. The BQI based on the oligochaetes could be calculated at almost all the stations. This index was modified by altering the empirical constants for two species. Diversity indices and the occurrences of single species had a limited value in the water quality assessment. The study concluded that DCA ordination is a powerful tool in evaluation of pollution. The method gives the best results when the sampling network is carefully planned and the material represents all sections of the underlying environmental gradients, e. g. a gradient from oligotrophy to eutrophy or heavy pollution.

Key words

ordination analysis zoobenthos lake pollution bioindex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berkman, H. E., C. F. Rabeni & T. B.Boyle, 1986. Biomonitors of stream quality in agricultural areas: fish versus invertebrates. Envir. Mgmt 10: 413–419.Google Scholar
  2. Brundin, L., 1949. Chironomiden und andere Bodentiere der Südschwedischen Urgebirgsseen. Inst. Freshwat. Res. Drottningholm Rep. 30: 1–914.Google Scholar
  3. Gauch, H. G. Jr., 1982. Multivariate analysis in community ecology. Cambridge Univ. Press, Cambridge, 298 pp.Google Scholar
  4. Green, R. H., 1979. Sampling design and statistical methods for environmental biologists. John Wiley & Sons, New York, 257 pp.Google Scholar
  5. Hill, M. O., 1979. DECORANA-A FORTRAN program for detrended correspondence analysis and reciprocal averaging. Ithaca, N.Y., Cornell University.Google Scholar
  6. Hill, M. O. & H. G. Gauch, Jr., 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio 42: 47–58.Google Scholar
  7. Kansanen, P. H., 1985. Assessment of pollution history from recent sediments in Lake Vanajavesi, southern Finland. II. Changes in the Chironomidae, Chaoboridae and Ceratopogonidae (Diptera) fauna. Ann. zool. fenn. 22: 71–104.Google Scholar
  8. Kansanen, P. H., 1988. Distribution and accumulation of total organic chlorine and chlorophenol compounds in the sediments of Lake Etelä-Saimaa, Finland. Wat. Sci. Technol. 20: 197.Google Scholar
  9. Kansanen, P. H. & A. Pilke, 1986. Etelä-Saimaan sedimenttitutkimus v. 1986. Paavo Ristola Ltd., mimeogr. rep., Hollola 28 pp. + App.Google Scholar
  10. Kansanen, P. H. & A. Pilke, 1987. Etelä-Saimaan rehevöitymisselvitys. Paavo Ristola Ltd., mimeogr. rep., Hollola, 42 pp. + App.Google Scholar
  11. Kansanen, P. H. & T. Väyrynen, 1987. Etelä-Saimaan pohjaeläintutkimus v. 1986. Paavo Ristola Ltd., mimeogr. rep., Hollola, 50 pp. + App.Google Scholar
  12. Kansanen, P. H., J. Aho & L. Paasivirta, 1984. Testing the benthic lake type concept based on chironomid associations in some Finnish lakes using multivariate statistical methods. Ann. zool. fenn. 21: 55–76.Google Scholar
  13. Kauppi, M., I. Kettunen, J. Kivinen, R. Niinioja & O. Sandman, 1985. Saimaan veden laadusta. Univ. Joensuu, Publ. Karelian Inst. 71: 16–41. (English summary: The quality of Lake Saimaa water.).Google Scholar
  14. Laine, P. & K. Silvo, 1987. Eteläisen Saimaan velvoitetarkkailujen yhteenveto v. 1985. Saimaan vesiensuojeluyhdistys ry, Lappeenranta, 96 pp.Google Scholar
  15. Meriläinen, J. J., 1987. The profundal zoobenthos used as an indicator of the biological condition of Lake Päijänne. Biol. Res. Rep. Univ. Jyväskylä 10: 87–94.Google Scholar
  16. Milbrink, G., 1983. An improved environmental index based on the relative abundance of oligochaete species. Hydrobiologia 102: 89–97.Google Scholar
  17. Nyman, C., M.-E. Anttila, H.-G. Lax & J. Sarvala, 1986. Koskien pohjaeläimistö jokien laatuluokittelun perusteena. Nat. Board Wat. Publ. 3: 3–76. (English summary: The bottom fauna of rapids as a measure of the quality f of running waters.).Google Scholar
  18. Ormerod, S. J. & R. W. Edwards, 1987. The ordination and classification of macroinvertebrates assemblages in the catchment of the River Wye in relation to environmental factors. Freshwat. Biol. 17: 533–546.Google Scholar
  19. Paasivirta, L., 1984. Pohjaeläimistön käyttö vesistöjen tilan arvioinnissa. Luonnon Tutkija 88: 79–84. (English summary: The use of zoobenthos in the assessment of the quality of water environments).Google Scholar
  20. Paasivirta, L., 1987. Macrozoobenthos of Lake Pyhäjärvi (Karelia). Finnish Fish. Res. 8: 27–37.Google Scholar
  21. Saether, O. A., 1979. Chironomid communities as water quality indicators. Holarct. Ecol. 2: 65–74.Google Scholar
  22. Saether, O. A., 1980. The influence of eutrophication on deep lake benthic invertebrate communities. Prog. Wat. Tech. 12: 161–180.Google Scholar
  23. Sarvala, J., 1984. Numeerinen yhteisöanalyysi vesistötutkimuksissa. Luonnon Tutkija 88: 108–115. (English summary: Multivariate community analysis in water research).Google Scholar
  24. Schaeffer, D. J., W. H. Ettinger, W. J. Tucker & H. W. Kerster, 1985. Evaluation of a community-based index using benthic indicator organisms for classifying stream quality. J. Wat. Pollut. Cont. Fed. 57: 167–171.Google Scholar
  25. Shannon, C. E. & W. Weaver, 1949. The mathematical theory of communication. Univ. Illinois Press, Urbana, 117 pp.Google Scholar
  26. Ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Adv. Ecol. Res. (in press).Google Scholar
  27. Uzunov, J., V. Kosel & V. Sladecek, 1988. Indicator value of freshwater Oligochaeta. Acta hydrochim. hydrobiol. 16: 173–186.Google Scholar
  28. Valley, K. J., 1927. Ökologisch-limnologische Untersuchungen über die Boden- und Tiefenfauna in einigen Seen nördlich vom Ladoga See. I. Acta zool. fenn. 2: 1–179.Google Scholar
  29. Warren, C. E., 1971. Biology and water pollution control. Saunders, Philadelphia, 434 pp.Google Scholar
  30. Wiederholm, T., 1980. Use of benthos in lake monitoring. J. Wat. Pollut. Cont. Fed. 52: 537–547.Google Scholar
  31. Wiederholm, T., 1981. Associations of lake-living Chironomidae. A cluster analysis of Brundin's and recent data from Swedish lakes. Schweiz. Z. Hydrol. 43: 140–150.Google Scholar
  32. Wilson, R. S., 1987. Chironomid communities in the River Trent in relation to water chemistry. Ent. Scand. Suppl. 29: 387–393.Google Scholar
  33. Wright, J. F., D. Moss, P. D. Armitage & M. T. Furse, 1984. A preliminary classification of running-water sites in Great Britain based on macroinvertebrate species and the prediction of community type using environmental data. Freshwat. Biol. 14: 221–256.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Pekka H. Kansanen
    • 1
  • Lauri Paasivirta
    • 2
  • Tarja Väyrynen
    • 1
  1. 1.Paavo Ristola LtdHollolaFinland
  2. 2.Department of BiologyUniversity of JyväskyläJyväskyläFinland

Personalised recommendations