Advertisement

Hydrobiologia

, Volume 123, Issue 1, pp 3–45 | Cite as

Benthic community metabolism in four temperate stream systems: An inter-biome comparison and evaluation of the river continuum concept

  • T. L. Bott
  • J. T. Brock
  • C. S. Dunn
  • R. J. Naiman
  • R. W. Ovink
  • R. C. Petersen
Article

Abstract

Benthic community metabolism was studied on four stream systems located in different biomes in the United States: the eastern deciduous forest (Pennsylvania, PA, and Michigan, MI), the high desert (Idaho, ID), and the coniferous forest (Oregon, OR). Studies were designed to test the hypothesis advanced within the River Continuum Concept that a transition in community metabolism will occur from a predominance of heterotrophy in headwaters to a predominance of autotrophy in mid-sized reaches, with a return to heterotrophy further downstream. Both gross primary productivity (GPP) and community respiration (CR24) increased with downstream direction on all systems. Net daily metabolism (NDM, or GPP − CR24) shifted from heterotrophy (−NDM, GPP < CR24) to autotrophy (+NDM, GPP > CR24) with downstream direction at all sites, supporting the hypothesis. Annual metabolism in the most upstream reach of all sites was dominated by respiration; however, the farthest downstream reach was not necessarily the most autotrophic. Site-specific factors affected manifestation of the trend. Photosynthesis predominated annual metabolism in reaches (designated 1–4 in order of increasing size) 2–4 in ID, 3 and 4 in OR, and 4 in MI. In PA annual photosynthesis was slightly greater than respiration only at Station 3. Photosynthesis was predominant most consistently in ID and respiration most often in PA. About half the reaches that were heterotrophic annually were autotrophic at one or more seasons. Annual means of benthic GPP, CR24 and NDM ranged from 0.16 to 3.37, 0.36 to 2.88 and −0.73 to 0.50 g O2 · m2 · d1, respectively. Metabolic rates were usually high in PA and MI (and sometimes ID) and almost always lowest in OR. Parameters accounting for most variance in multiple linear regression analyses of the combined metabolism data from all sites were indicators of stream size, photosynthetically active radiation, temperature, and chlorophyll a concentration.

Keywords

benthic community metabolism primary productivity community respiration stream ecology river continuum concept 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Public Health Association, 1975. Standard methods for the examination of water and wastewater, 14th Edn. Am. Publ. Hlth. Ass., N.Y.Google Scholar
  2. Axler, R. P., G. W. Redfield & C. R. Goldman, 1981. The importance of regenerated nitrogen to phytoplankton productivity in a subalpine lake. Ecology 62: 345–354.Google Scholar
  3. Bidwell, R. G. S., 1977. Photosynthesis and light and dark respiration in freshwater algae. Can. J. Bot. 55: 809–818.Google Scholar
  4. Bombowna, M., 1972. Primary production of a montane river. In Z. Kajak & A. Hillbricht-Ilkowska (eds.), Proc. IBPUNESCO Symp. Productivity Problems of Freshwaters. Kazimierz Dolny, Poland: 661–671.Google Scholar
  5. Bott, T. L., J. T. Brock, C. E. Cushing, S. V. Gregory, D. King & R. C. Petersen, 1978. A comparison of methods for measuring primary productivity and community respiration in streams. Hydrobiologia 60: 3–12.Google Scholar
  6. Bott, T. L. & F. P. Ritter, 1981. Benthic algal productivity in a piedmont stream measured by 14C and dissolved oxygen change procedures. J. Freshwat. Biol. 1: 267–278.Google Scholar
  7. Brezonik, P. L., 1972. Nitrogen: sources and transformations in natural waters. In H. E. Allen & J. R. Kramer (eds.), Nutrients in natural waters. Envir. Sci. & Technol. Ser., Wiley-Interscience, N.Y.: 1–50.Google Scholar
  8. Brock, J. T., 1980. Annual metabolism of a desert stream-segment ecosystem: Rock Creek, Idaho. M.S. Thesis, Idaho St. Univ., Pocatello, Idaho.Google Scholar
  9. Busch, D. E. & S. G. Fisher, 1981. Metabolism of a desert stream. Freshwat. Biol. 11: 301–307.Google Scholar
  10. Cohen, R. R. H., M. G. Kelly & M. R. Church, 1982. The effect of CO2 on the relationship of photosynthetic rate to light intensity in laboratory phytoplankton cultures. Arch. Hydrobiol. 94: 326–340.Google Scholar
  11. Cushing, C. E., 1967. Periphyton productivity and radionuclide accumulation in the Columbia River, Washington, U.S.A. Hydrobiologia 29: 125–139.Google Scholar
  12. Cushing, C. E., K. W. Cummins, G. W. Minshall & R. L. Vannote, 1983. Periphyton, chlorophyll a and diatoms of the Middle Fork of the Salmon River, Idaho. Hol. Ecol. 6: 221–227.Google Scholar
  13. Cushing, C. E. & E. G. Wolf, 1982. Organic energy budget of Rattlesnake Springs, Washington. Am. Midl. Nat. 107: 404–407.Google Scholar
  14. de la Cruz, A. A. & H. A. Post, 1977. Production and transport of organic matter in a woodland stream. Arch. Hydrobiol. 80: 227–238.Google Scholar
  15. Duffer, W. & T. C. Dorris, 1966. Primary productivity in a southern Great Plains stream. Limnol. Oceanogr. 11: 143–151.Google Scholar
  16. Edwards, R. W. & M. Owens, 1962. The effects of plants on river conditions, 4. The oxygen balance of a chalk stream. J. Ecol. 50: 207–220.Google Scholar
  17. Elwood, J. W. & D. J. Nelson, 1972. Periphyton production and grazing rates in a stream measured with a P-32 material balance method. Oikos 23: 295–303.Google Scholar
  18. Eppley, R. W., 1981. Autotrophic production of particulate matter. In A. R. Longhurst (ed.), Analysis of Marine Ecosystems. Academic Press, N.Y.: 343–361.Google Scholar
  19. Fisher, S. G. & S. R. Carpenter, 1976. Ecosystem and macrophyte primary production of the Fort River, Massachusetts. Hydrobiologia 47: 175–187.Google Scholar
  20. Fisher, S. G., L. J. Gray, N. B. Grimm & D. E. Busch, 1982. Temporal succession in a desert stream ecosystem following flash flooding. Ecol. Monogr. 32: 93–110.Google Scholar
  21. Fisher, S. G. & G. E. Likens, 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol. Monogr. 43: 421–439.Google Scholar
  22. Flemer, D. A., 1970. Primary productivity of the north branch of the Raritan River, New Jersey. Hydrobiologia 35: 273–296.Google Scholar
  23. Gelroth, J. V. & G. R. Marzolf, 1978. Primary production and leaf-litter decomposition in natural and channelized portions of a Kansas stream. Am. Midl. Nat. 99: 238–243.Google Scholar
  24. Grzenda, A. R. & M. L. Brehmer, 1960. A quantitative method for the collection and measurement of stream periphyton. Limnol. Oceanogr. 5: 190–194.Google Scholar
  25. Gunnerson, C. G. & T. E. Bailey, 1963. Oxygen relationships in the Sacramento River. Proc. Am. Soc. Civ. Engrs. 89 SA4: 95–124.Google Scholar
  26. Hall, C. A. S., 1972. Migration and metabolism in a temperate stream ecosystem. Ecology 53: 586–604.Google Scholar
  27. Hannan, H. A. & T. C. Dorris, 1970. Succession of a macrophyte community in a constant temperature river. Limnol. Oceanogr. 15: 442–453.Google Scholar
  28. Hansmann, E. W., C. B. Lane & J. D. Hall, 1971. A direct method of measuring benthic primary production in streams. Limnol. Oceanogr. 16: 822–826.Google Scholar
  29. Hargrave, B. T., 1972. Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limnol. Oceanogr. 17: 583–596.Google Scholar
  30. Hill, B. H. & J. R. Webster, 1982. Periphyton production in an Appalachian river. Hydrobiologia 97: 275–280.Google Scholar
  31. Holm-Hansen, O. & B. Riemann, 1978. Chlorophyll a determination: improvements in methodology. Oikos 30: 438–447.Google Scholar
  32. Hornberger, G. M., M. G. Kelly & B. J. Cosby, 1977. Evaluating eutrophication potential from river community productivity. Wat. Res. 11: 65–69.Google Scholar
  33. Horner, R. R. & E. B. Welch, 1981. Stream periphyton development in relation to current velocity and nutrients. Can. J. Fish. aquat. Sci. 38: 449–457.Google Scholar
  34. Hornick, L. E., J. R. Webster & E. F. Benfield, 1981. Periphyton production in an Appalachian mountain trout stream. Am. Midl. Nat. 106: 22–36.Google Scholar
  35. Hornuff, L., 1957. A survey of four Oklahoma streams with reference to production. Oklahoma Fish. Res. Lab. Rep. 62: 1–22.Google Scholar
  36. Hoskin, C. M., 1959. Studies of oxygen metabolism of streams of North Carolina. Publs Inst. mar. Sci. Texas 6: 186–192.Google Scholar
  37. Hough, R. A., 1976. Light and dark respiration and release of organic carbon in marine macrophytes. Aust. J. Pl. Physiol. 3: 63–68.Google Scholar
  38. Kobayasi, H., 1961a. Chlorophyll content in sessile algal community of Japanese mountain river. Bot. Mag. Tokyo 74: 228–235.Google Scholar
  39. Kobayasi, H., 1961b. Productivity in sessile algal community of Japanese mountain river. Bot. Mag. Tokyo 74: 331–341.Google Scholar
  40. Kobayasi, H., 1972. Chlorophyll content and primary production of the sessile algal community in the mountain stream Chigonozowa running close to the Kiso Biological Station of the Kyoto University. Mem. Fac. Sci., Kyoto Univ., Ser. Biol. 5: 89–107.Google Scholar
  41. Kowalczewski, A. & T. J. Lack, 1971. Primary production and respiration of phytoplankton of the Rivers Thames and Kennet at Reading. Freshwat. Biol. 1: 197–212.Google Scholar
  42. Leopold, L. B., M. G. Wolman & J. P. Miller, 1964. Fluvial processes in geomorphology. W. H. Freeman & Co., S. Francisco.Google Scholar
  43. Lewis, M. A. & S. D. Gerking, 1979. Primary productivity in a polluted intermittent desert stream. Am. Midl. Nat. 102: 172–174.Google Scholar
  44. Liaw, W. K. & H. R. MacCrimmon, 1978. Assessing changes in biomass of riverbed periphyton. Int. Revue ges. Hydrobiol. 63: 155–179.Google Scholar
  45. Lorenzen, C. J., 1967. Determination of chlorophyll and pheopigments: Spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.Google Scholar
  46. Lotspeich, F. B., 1980. Watersheds as the basic ecosystem: this conceptual framework provides a basis for a natural classification system. Wat. Res. Bull. 16: 581–586.Google Scholar
  47. Lyford, J. H., Jr. & S. V. Gregory, 1975. The dynamics and structure of periphyton communities in three Cascade Mountain streams. Verh. int. Ver. theor. angew. Limnol. 19: 1610–1616.Google Scholar
  48. Mahan, D. C. & K. W. Cummins, 1978. A profile of Augusta Creek in Kalamazoo and Barry Counties, Michigan. Tech. Rep. 3: W. K. Kellogg biol. Stn, Mich. St. Univ., Lansing, Mich.Google Scholar
  49. Marker, A. F. H., 1976a. The benthic algae of some streams in southern England, 1. Biomass of the epilithon in some small streams. J. Ecol. 64: 343–358.Google Scholar
  50. Marker, A. F. H., 1976b. The benthic algae of some streams in southern England, 2. The primary production of epilithon in a small chalk-stream. J. Ecol. 64: 359–373.Google Scholar
  51. McConnell, W. J. & W. F. Sigler, 1959. Chlorophyll and productivity in a mountain stream. Limnol. Oceanogr. 4: 335–351.Google Scholar
  52. McCree, K. J., 1972. Test of current definition of photosynthetically active radiation against leaf photosynthesis data. Agric. Meterol. 10: 443–453.Google Scholar
  53. McDiffet, W. F., A. E. Carr & D. L. Young, 1972. An estimate of primary productivity in a Pennsylvania trout stream using a diurnal curve technique. Am. Midl. Nat. 87: 564–570.Google Scholar
  54. Minshall, G. W., 1978. Autotrophy in stream ecosystems. BioSci. 28: 767–771.Google Scholar
  55. Minshall, G. W., J. T. Brock & T. W. LaPoint, 1982. Characterization and dynamics of benthic organic matter and invertebrate functional feeding group relationships in the upper Salmon River, Idaho (USA). Int. Revue ges. Hydrobiol. 67: 793–820.Google Scholar
  56. Minshall, G. W., J. T. Brock, D. A. McCullough, R. Dunn, M. R. McSorley & R. Pace, 1975. Process studies related to the Deep Creek ecosystem. U.S./IBP Desert Biome Research Memorandum, 75–46. Utah St. Univ., Logan.Google Scholar
  57. Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, C. E. Cushing & R. L. Vannote, 1983. Interbiome comparison of stream ecosystem dynamics. Ecol. Monogr. 53: 1–25.Google Scholar
  58. Moeller, J. R., G. W. Minshall, K. W. Cummins, R. C. Petersen, C. E. Cushing, J. R. Sedell, R. A. Larson & R. L. Vannote, 1979. Transport of dissolved organic carbon in streams of different physiographic characteristics. Org. Geochem. 1: 139–150.Google Scholar
  59. Naiman, R. J., 1976. Primary production, standing stock and export of organic matter in a Mohave Desert thermal stream. Limnol. Oceanogr. 21: 60–73.Google Scholar
  60. Naiman, R. J., 1983. The annual pattern and spatial distribution of aquatic oxygen metabolism in boreal forest watersheds. Ecol. Monogr. 53: 73–94.Google Scholar
  61. Naiman, R. J. & J. R. Sedell, 1979. Benthic organic matter as a function of stream order in Oregon. Arch. Hydrobiol. 87: 404–422.Google Scholar
  62. Naiman, R. J. & J. R. Sedell, 1980. Relationships between metabolic parameters and stream order in Oregon. Can. J. Fish. aquat. Sci. 37: 834–847.Google Scholar
  63. Nelson, D. J. & D. C. Scott, 1962. Role of detritus in the productivity of a rock outcrop community of a piedmont stream. Limnol. Oceanogr. 7: 396–413.Google Scholar
  64. Nie, N. H., C. H. Hull, J. G. Jenkins, K. Steinbrenner & D. H. Bent, 1975. SPSS: Statistical package for the social sciences. McGraw Hill Publishing Co. Ltd., N.Y.Google Scholar
  65. Odum, E. P., 1971. Fundamentals of ecology. W. B. Saunders Co., Philadelphia.Google Scholar
  66. Odum, H. T., 1966. Primary production in flowing waters. Limnol Oceanogr. 1: 102–117.Google Scholar
  67. Odum, H. T., 1957. Trophic structure and productivity of Silver Springs, Florida. Ecol. Monogr. 27: 55–112.Google Scholar
  68. Owens, M., 1965. Some factors involved in the use of dissolved oxygen distribution in streams to determine productivity. In C. R. Goldman (ed.), Primary productivity in aquatic environments. Mem. Ist. ital. Idrobiol. 18, Suppl., University of California Press, Berkeley: 209–224.Google Scholar
  69. Pennak, R. W. & J. W. Lavelle, 1979. In situ measurements of net primary productivity in a Colorado mountain stream. Hydrobiologia 66: 227–235.Google Scholar
  70. Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwat. Biol. 4: 343–368.Google Scholar
  71. Pfeifer, R. F. & W. F. McDiffett, 1975. Some factors affecting primary productivity of stream riffle communities. Arch. Hydrobiol. 75: 306–317.Google Scholar
  72. Pryfogle, P. A. & R. L. Lowe, 1979. Sampling and interpretation of epilithic lotic diatom communities. In R. L. Weitzel (ed.), Methods and measurements of periphyton communities: A review. Am. Soc. Test. Mater., Philadelphia: 77–81.Google Scholar
  73. Seyfer, J. R. & J. Wilhm, 1977. Variation with stream order in species composition, diversity, biomass and chlorophyll of periphyton in Otter Creek, Oklahoma. SWest. Nat. 22: 455–467.Google Scholar
  74. Scheffe, H., 1959, The analysis of variance. John Wiley & Sons, N. Y.Google Scholar
  75. Shreve, R. L., 1975. Statistical law of stream numbers. J. Geol. 74: 17–37.Google Scholar
  76. Simonsen, J. F. & P. Harremoes, 1978. Oxygen and pH fluctuations in rivers. Wat. Res. 12: 477–489.Google Scholar
  77. Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14: 799–801.Google Scholar
  78. Stockner, J. G. & K. R. S. Shortreed, 1976. Autotrophic production in Carnation Creek, a coastal rainforest stream on Vancouver Island, British Columbia. J. Fish. Res. Bd Can. 33: 1553–1563.Google Scholar
  79. Strahler, A. N., 1957. Quantitative analyses of watershed geomorphology. Trans. Am. Geophys. Un. 38: 913–920.Google Scholar
  80. Strickland, J. D. H. & T. Parsons, 1972. A practical handbook of seawater analysis. Fish. Res. Bd Can., Ottawa.Google Scholar
  81. Sumner, W. T. & S. G. Fisher, 1979. Periphyton production in Fort River, Massachusetts. Freshwat. Biol. 9: 205–212.Google Scholar
  82. Syrett, P. J., 1962. Nitrogen assimilation, In R. A. Lewin (ed.), Physiology and Biochemistry of Algae, Academic Press, N.Y.: 171–188.Google Scholar
  83. Talling, T. F., 1973. The application of some electrochemical methods to the measurement of photosynthesis and respiration in fresh water. Freshwat. Biol. 3: 335–362.Google Scholar
  84. Tett, P., C. Gallegos, M. G. Kelly, G. M. Hornberger & B. J. Cosby, 1978. Relationships among substrate, flow, and benthic microalgal pigment density in the Mechums River, Virginia. Limnol. Oceanogr. 23: 785–797.Google Scholar
  85. Thomas, N. A. & R. I., O'Connell, 1966. A method for measuring primary production by stream benthos. Limnol. Oceanogr. 11: 386–392.Google Scholar
  86. Tilley, L. J. & W. L. Hauschild, 1975. Use of productivity of periphyton to estimate water quality. J. Wat. Pollut. Cont. Fed. 47: 2157–2171.Google Scholar
  87. Tominaga, H. & S. Ichimura, 1966. Ecological studies on the organic matter production in a mountain river ecosystem. Bot. Mag., Tokyo 79: 815–829.Google Scholar
  88. Vannote, R. L., 1981. The River Continuum: A theoretical construct for the analysis of river ecosystems. In R. D. Cross & D. L. Williams (eds.), Proc. natn. Symp. Freshwat. Inflow to Estuaries, V. 2: Fish & Wildlife Serv., U.S. Dep. Interior, Washington: 209–304.Google Scholar
  89. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Can. J. Fish. aquat. Sci. 37: 130–137.Google Scholar
  90. Wetzel, R. G., 1975. Primary production. In B. A. Whitton (ed.), River Ecology, University of California Press, Berkeley: 239–247.Google Scholar
  91. Wilhm, J., J. Cooper & H. Namminga, 1978. Species composition, diversity, biomass, and chlorophyll of periphyton in Greasy Creek, Red Rock Creek, and the Arkansas River, Oklahoma. Hydrobiologia 57: 17–23.Google Scholar
  92. Wissmar, R. C., J. E. Richey, R. F. Stallard & J. M. Edmund, 1981. Plankton metabolism and carbon processes in the Amazon River, its tributaries, and foodplain waters, Peru-Brazil, May–June 1977. Ecology 62: 1622–1633.Google Scholar
  93. Woodwell, G. M. & R. H. Whittaker, 1968. Primary production in terrestrial ecosystems. Am. Zool. 8: 19–30.Google Scholar
  94. Wright, J. C. & I. K. Mills, 1967. Productivity studies on the Madison River, Yellowstone National Park. Limnol. Oceanogr. 12: 568–577.Google Scholar
  95. Yallop, M. L., 1982. Some effects of light on algal respiration and the validity of the light and dark bottle technique for measuring primary productivity. Freshwat. Biol. 12: 427–433.Google Scholar

Copyright information

© Dr W. Junk Publishers 1985

Authors and Affiliations

  • T. L. Bott
    • 1
  • J. T. Brock
    • 2
  • C. S. Dunn
    • 1
  • R. J. Naiman
    • 3
    • 5
  • R. W. Ovink
    • 4
    • 6
  • R. C. Petersen
    • 1
    • 7
  1. 1.Stroud Water Research Center of the Academy of Natural SciencesAvondale
  2. 2.Department of BiologyIdaho State UniversityPocatello
  3. 3.Department of Fisheries and WildlifeOregon State UniversityCorvallis
  4. 4.Kellogg Biological StationMichigan State UniversityHickory Corners
  5. 5.Woods Hole Oceanographic InstitutionWoods Hole
  6. 6.Corvallis
  7. 7.University of LundLundSweden

Personalised recommendations