, Volume 228, Issue 3, pp 203–217 | Cite as

Food selection by freshwater snails in the Gezira irrigation canals, Sudan

  • Henry Madsen


Stomach content analysis was carried out on samples of the freshwater snail species Biomphalaria pfeifferi, Bulinus truncatus, Bulinus forskalii (Pulmonata, Planorbidae), Lymnaea natalensis (Pulmonata, Lymnaeidae), Melanoides tuberculata, Cleopatra bulimoides (Prosobranchia, Thiaridae) and Lanistes carinatus (Prosobranchia, Ampullariidae) from different irrigation canals in Sudan. In order to evaluate overlap in diet selection among these species, sites with two or more of the above-mentioned species present were selected. For some species food choice was examined in relation to size groupings. In addition, samples of Marisa cornuarietis (Prosobranchia, Ampullariidae) from small ponds in Sudan, samples of Biomphalaria pfeifferi and Helisoma duryi (Pulmonata, Planorbidae) from drainage canals in an irrigation scheme in northern Tanzania, and samples of H. duryi from fish ponds in the coastal area of Kenya were also analysed.

The results indicate a great similarity in the food choice of these species, especially among the pulmonate species. All species feed on fine detritus, epiphytic algae and decaying macrophytes. No fresh fragments of aquatic macrophytes were found and animal remains were found only on a few occasions. However, the stomach contents of the ampullarid species were characterized by large fragments of dead macrophyte tissue, while the composition of the finer particles showed a great resemblance to that of the pulmonate species. The diet of the thiarid species is essentially the same as that of the pulmonate species, although in one site Cleopatra bulimoides showed a greater preference for green algae. Apart from the avoidance of blue-green algae, there was little evidence of selection of certain algal components of the Aufwuchs for the pulmonate species. Detritus constitutes the major component of the stomach content of all these snail species.

Key words

Biomphalaria Bulinus Helisoma Marisa schistosomiasis food choice competition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, E. B., 1965. The functional anatomy of the gut of the prosobranch gastropod Pomacea canaliculata (D'Orb.) and some other pilids. Proc. Zool. Soc. Lond. 145: 19–36.CrossRefGoogle Scholar
  2. Baluku, B., G. Josens & M. Loreau, 1987. Le régime alimentaire de Biomphalaria pfeifferi (Gastropoda: Planorbidae) au Zaïre oriental. Revue Zool. afr. 101: 279–282.Google Scholar
  3. Berry, A. J., 1974. The anatomy of West Malaysian snails of parasitological significance. Malay. Nat. J. 27: 131–165.Google Scholar
  4. Berthold, T., 1988. Anatomy of Afropomus balanoideus (Mollusca, Gastropoda, Ampullariidae) and its implications for phylogeny and ecology. Zoomorphology 108: 149–159.CrossRefGoogle Scholar
  5. Bovbjerg, R. V., 1965. Feeding and dispersal in the snail Stagnicola reflexa (Basommathophora: Lymnaeidae). Malacologia 2: 199–207.Google Scholar
  6. Boycott, A. E., 1936. The habitats of fresh-water Mollusca in Britain. J. anim. Ecol. 5: 116–186.CrossRefGoogle Scholar
  7. Calow, P., 1970. Studies on the natural diet of Lymnaea pereger obtusa (Kobelt) and its possible implications. Proc. malac. Soc. Lond. 39: 203–215.Google Scholar
  8. Calow, P., 1973a. Field observations and laboratory experiments on the general food requirements of two species of freshwater snail, Planorbis contortus (Linn.) and Ancylus fluviatilis Müll. Proc. malac. Soc. Lond. 40: 483–489.Google Scholar
  9. Calow, P., 1973b. The food of Ancylus fluviatilis (Müll.), a littoral stone-dwelling, herbivore. Oecologia 13: 113–133.CrossRefGoogle Scholar
  10. Cedeño-León, A. & J. D. Thomas, 1982. Competition between Biomphalaria glabrata (Say) and Marisa cornuarietis (L.): feeding niches. J. appl. Ecol. 19: 707–721.CrossRefGoogle Scholar
  11. Clampitt, P. T., 1970a. Comparative ecology of the snails Physa gyrina and Physa integra (Basommatophora: Physidae). Malacologia 10: 113–151.Google Scholar
  12. Clampitt, P. T., 1970b. The role of substratum and food in the distribution of the pulmonate snails of Douglas Lake, Cheboygan County, Michigan. Am. Zool. 10: 325.Google Scholar
  13. Dazo, B. C. & R. G. Moreno, 1962. Studies on the food and feeding habits of Oncomelania quadrasi, the snail intermediate host of Schistosoma japonicum in the Philippines. Trans. am. Microsc. Soc. 81: 341–347.CrossRefGoogle Scholar
  14. Demian, E. S., 1964. The anatomy of the alimentary system of Marisa cornuarietis (L.). Medd. Göteborgs Mus. Zool. Avd., 138 (Göteborgs K. Vetensk. Vitterh. Samh. Handl., Ser. B. 9 (7): 1–75).Google Scholar
  15. Demian, E. S. & A. M. Ibrahim, 1969. Feeding activities of the snail Marisa cornuarietis (L.) under laboratory conditions. Proc. 6th. Arab. Sci. Congr., Damascus 1969 1: 145–165.Google Scholar
  16. Eisenberg, R. M., 1966. The regulation of density in a natural population of the pond snail, Lymnaea elodes. Ecology 47: 889–906.CrossRefGoogle Scholar
  17. Eisenberg, R. M., 1970. The role of food in the regulation of the pond snail, Lymnaea elodes. Ecology 51: 680–684.CrossRefGoogle Scholar
  18. Fenchel, T., 1975. Character displacement and coexistence in mud snails (Hydrobiidae). Oecologia 20: 19–32.CrossRefGoogle Scholar
  19. Fenchel, T. & L. H. Kofoed, 1976. Evidence for exploitative interspecific competition in mud snails (Hydrobiidae). Oikos 27: 367–376.Google Scholar
  20. Gaevskaya, N. S., 1969. The role of higher aquatic plants in the nutrition of the animals of fresh-water basins. Trans. DG Maitland Müller (ed. KH Mann), vol 1, Ch. 1 & 2. National Lending Library for Science and Technology, Boston Spa, Yorkshire, England.Google Scholar
  21. Gohar, H. A. F. & H. I. El-Gindy, 1961. Food of snail vectors of bilharziasis and fascioliasis. J. Egypt. Med. Ass. 44: 976–982.PubMedGoogle Scholar
  22. Graham, A., 1955. Molluscan diets. Proc. malac. Soc. Lond. 31: 144–159.Google Scholar
  23. Haller, R. D., 1974. Rehabilitation of a limestone quarry. Report of an environmental experiment. Bamburi Portland Cement Co., Ltd., Mombasa, Kenya.Google Scholar
  24. Higashi, M., T. Miura, K. Tanimizu & Y. Iwasa, 1981. Effect of the feeding activity of snails on the biomass and productivity of an algal community attached to a reed stem. Verh. int. Ver. Limnol. 21: 590–595.Google Scholar
  25. Hunter, R. D., 1980. Effects of grazing on the quantity and quality of freshwater Aufwuchs. Hydrobiologia 69: 251–259.CrossRefGoogle Scholar
  26. Hunter, W. R., 1961. Annual variations in growth and density in natural populations of freshwater snails in the west of Scotland. Proc. Zool. Soc. Lend. 136: 219–253.Google Scholar
  27. Karim, A. G. A. & O. M. M. Ali, 1985. Studies on the freshwater algae of the Sudan. Sudan. J. Sci. 1: 1–12.Google Scholar
  28. Karoum, K. O. & H. Madsen, 1989. Field trials to control the intermediate hosts of schistosomes in Gezira irrigation canals by competitor snails. Abstr. 10th. Int. Malacol. Congr. Tübingen p. 125.Google Scholar
  29. Lodge, D. M., 1986. Selective grazing on periphyton: a determinant of freshwater gastropod microdistributions. Freshw. Biol. 16: 831–841.CrossRefGoogle Scholar
  30. McMahon, R. F., R. D. Hunter & W. D. Russell-Hunter, 1974. Variation in Aufwuchs at six freshwater habitats in terms of carbon biomass and of carbon: nitrogen ratio. Hydrobiologia 45: 391–404.Google Scholar
  31. Madsen, H., 1983. Distribution of Helisoma duryi, an introduced competitor of intermediate hosts of schistosomiasis, in an irrigation scheme in northern Tanzania. Acta Trop. 40: 297–306.PubMedGoogle Scholar
  32. Madsen, H., A. A. Dafalla, K. O. Karoum & F. Frandsen, 1988. Distribution of freshwater snails in irrigation schemes in the Sudan. J. appl. Ecol. 25: 853–866.CrossRefGoogle Scholar
  33. Malek, E. A., 1958. Factors conditioning the habitat of bilharziasis intermediate hosts of the family Planorbidae. Bull. WHO 18: 785–818.Google Scholar
  34. Nguma, J. F. M., F. S. McCullough & E. Masha, 1982. Elimination of Biomphalaria pfeifferi, Bulinus tropicus and Lymnaea natalensis by the ampullarid snail, Marisa cornuarietis, in a man-made dam in northern Tanzania. Acta Trop. 39: 85–90.PubMedGoogle Scholar
  35. Patience, R. L., P. R. Sterry & J. D. Thomas, 1983. Changes in the chemical composition of a decomposing aquatic macrophyte, Lemna paucicostata. J. Chem. Ecol. 9: 889–911.CrossRefGoogle Scholar
  36. Patrick, R., 1970. Benthic stream communities. A discussion of the factors that affect their structure and how they function. Am. Sci. 58: 546–549.Google Scholar
  37. Paulinyi, H. M. & E. Paulini, 1972. Laboratory observations on the biological control of Biomphalaria glabrata by a species of Pomacea (Ampullariidae). Bull. WHO 46: 243–247.PubMedGoogle Scholar
  38. Pianka, E. R., 1973. The structure of lizard communities. Ann. Rev. Ecol. Syst. 4: 53–74.CrossRefGoogle Scholar
  39. Pianka, E. R., 1973. The structure of lizard communities. twelve species of nocturnal lizards (Gekkonidae) in the Western Australian desert. Copeia 1976: 125–142.Google Scholar
  40. Pimentel, D. & P. C. White Jr., 1959. Biological environment and habits of Australorbis glabratus. Ecology 40: 541–550.CrossRefGoogle Scholar
  41. Pinel-Alloul, B. & É. Magnin, 1979. Étude de la nourriture de Lymnaea catascopium catascopium (Gastropoda, Lymnaeidae) dans le lac Saint-Louis, fleuve Saint-Laurent, Québec. Naturaliste Can. 106: 277–287.Google Scholar
  42. Pointier, J. P., A. Théron & D. Imbert-Establet, 1988. Decline of a sylvatic focus of Schistosoma mansoni in Guadeloupe (French West Indies) following the competitive displacement of the snail host Biomphalaria glabrata by Ampullaria glauca. Oecologia 75: 38–43.CrossRefGoogle Scholar
  43. Pointier, J. P., A. Guyard & A. Mosser, 1989. Biological control of Biomphalaria glabrata and B. straminea by the competitor snail Thiara granifera in a transmission site of schistosomiasis in Martinique, French West Indies. Ann. Trop. Med. Parasit. 83: 263–269.PubMedGoogle Scholar
  44. Pointier, J. P. & F. McCullough, 1989. Biological control of the snail hosts of Schistosoma mansoni in the Caribbean area using Thiara spp. Acta Trop. 46: 147–155.PubMedCrossRefGoogle Scholar
  45. Reavell, P. E., 1980. A study of the diets of some British freshwater gastropods. J. Conch. 30: 253–271.Google Scholar
  46. Scheerboom, J. E. M. & R. van Elk, 1978. Field observations on the seasonal variations in the natural diet and the haemolymph-glucose concentration of the pond snail Lymnaea stagnalis (L.). Proc. Kon. Ned. Akad. Wet., Ser. C., 81: 365–376.Google Scholar
  47. Schoener, T. W., 1983. Field experiments on interspecific competition. Am. Nat. 122: 240–285.CrossRefGoogle Scholar
  48. Seaman, D. E. & W. A. Porterfield, 1964. Control of aquatic weeds by the snail Marisa cornuarietis. Weeds 12: 87–92.Google Scholar
  49. Skoog, G., 1978. Influence of natural food items on growth and egg production in brackish water populations of Lymnaea peregra and Theodoxus fluviatilis (Mollusca). Oikos 31: 340–348.Google Scholar
  50. Smith, D. A., 1989. Tests of feeding selectivity in Helisoma trivolvis (Gastropoda: Pulmonata). Trans. am. Microsc. Soc. 108: 394–402.CrossRefGoogle Scholar
  51. Sokal, R. R. & F. J. Rohlf, 1969. Biometry. The principles and practice of statistics in biological research. WH Freeman and Company; San Francisco.Google Scholar
  52. Sterry, P. R., J. D. Thomas & R. L. Patience, 1985. Changes in the concentrations of short-chain carboxylic acids and gases during decomposition of the aquatic macrophytes Lemna paucicostata and Ceratophyllum demersum. Freshw. Biol. 15: 139–153.CrossRefGoogle Scholar
  53. Stiglingh, I. & J. A. van Eeden, 1970. Notes on the feeding behaviour of Bulinus (Bulinus) tropicus (Krauss) Basommatophora: Planorbidae. Wet. Bydr. P.U.C.H.O. Reeks B Naturwet. 22: 1–14.Google Scholar
  54. Storey, R., 1971. Some observations on the feeding habits of Lymnaea peregra (Müller). Proc. malac. Soc. Lond. 39: 327–331.Google Scholar
  55. Thomas, J. D., 1987. An evaluation of the interactions between freshwater pulmonate snail hosts of human schistosomes and macrophytes. Phil. Trans. R. Soc., Lond. B315: 75–125.Google Scholar
  56. Thomas, J. D. & B. Assefa, 1979. Behavioural responses to amino acids by juvenile Biomphalaria glabrata, a snail host of Schistosoma mansoni. Comp. Biochem. Physiol. 63C: 99–108.Google Scholar
  57. Thomas, J. D., B. Assefa, C. Cowley & J. Ofosu-Barko, 1980. Behavioural responses to amino acids and related compounds, including propionic acid by adult Biomphalaria glabrata (Say) a snail host of Schistosoma mansoni. Comp. Biochem. Physiol. 66C: 17–27.Google Scholar
  58. Thomas, J. D., B. Grealy & C. F. Fennell, 1983a. The effects of varying the quantity and quality of various plants on feeding and growth of Biomphalaria glabrata (Gastropoda). Oikos 41: 77–90.Google Scholar
  59. Thomas, J. D., D. I. Nwanko & P. R. Sterry, 1985. The feeding strategies of juvenile and adult Biomphalaria glabrata (Say) under simulated natural conditions and their relevance to ecological theory and snail control. Proc. R. Soc. Lond. B226: 177–209.CrossRefGoogle Scholar
  60. Thomas, J. D., J. Ofosu-Barko & R. L. Patience, 1983b. Behavioural responses to carboxylic and amino acids by Biomphalaria glabrata (Say), the snail hosts of Schistosoma mansoni (Sambon) and other freshwater molluscs. Comp. Biochem. Physiol. 75C: 57–76.Google Scholar
  61. Thomas, J. D., P. R. Sterry & R. L. Patience, 1984. Uptake and assimilation of short chain carboxylic acids by Biomphalaria glabrata (Say), the freshwater pulmonate snail host of Schistosoma mansoni (Sambon). Proc. R. Soc. Lond. B222: 447–476.Google Scholar
  62. Thomas, K. J., 1975. Biological control of Salvinia by the snail Pila globosa Swainson. Biol. J. Linn. Soc. 7: 243–247.Google Scholar
  63. Thompson, S. N., 1984. Spirulina as a nutrient source in experimental media for maintaining the schistosome vector, Biomphalaria glabrata. Ann. Trop. Med. Hyg. 78: 547–548.CrossRefGoogle Scholar
  64. West, G. S. & F. E. Fritsch, 1927. A Treatise on the British Freshwater Algae. Cambridge, University Press.Google Scholar
  65. World Health Organization, 1982. Data sheet on the biological control agent, Marisa cornuarietis (Linn.). WHO/VBC/82.837, VBC/BCDS/82.18.Google Scholar
  66. World Health Organization, 1984a. Data sheet on Helisoma spp. as biological control agents. WHO/VBC/84.894, VBC/BCDS/84.19.Google Scholar
  67. World Health Organization, 1984b. Report of an informal consultation on research on the biological control of snail intermediate hosts. TDR/BCV-SCH/SIH/84.3.Google Scholar
  68. Xavier, M. de L. S., J. F. de A. Azevedo & I. Avelino, 1968. Importance d'Oscillatoria formosa Bory dans la culture au laboratoire des mollusques vecteurs du Schistosoma haematobium. Bull. Soc. Path. Exot. 61: 52–66.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Henry Madsen
    • 1
  1. 1.Danish Bilharziasis LaboratoryWHO Collaborating Centre for Applied Medical Malacology and Schistosomiasis ControlCharlottenlundDenmark

Personalised recommendations