Hydrobiologia

, Volume 231, Issue 2, pp 77–84 | Cite as

Embryology of Chaoborus-induced spines in Daphnia pulex

  • Ken Parejko
Article

Abstract

Daphnia pulex (Crustacea: Cladocera) embryos were found to be sensitive to a chemical cue (kairomone) in an extract of the predator Chaoborus americanus (Insecta:Diptera). Sensitivity of embryos to the kairomone remains throughout embryonic development. Apparently declining sensitivity as development proceeds may be due to the amount of time the embryos are exposed to the kairomone. Male embryos were also found to be sensitive to the kairomone. The smallest eggs within a brood produced small offspring, which showed the antipredator morphology to a significantly lower degree than largest eggs. The production of the neckteeth is described, at the developmental stage in the maturation of the Daphnia coinciding approximately with the escape of the embryos from the brood chamber.

Key words

Daphnia pulex Chaoborus americanus embryological induction antipredator defense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldass, F. V., 1942. Entwicklung von Daphnia pulex. Zool. Jb. 67: 1–60.Google Scholar
  2. Banta, A. M., 1939. Studies on the physiology, genetics and evolution of some Cladocera. Carnegie Inst. of Washington, Washington, D. C. Dept. of Genetics, No. 39.Google Scholar
  3. Banta, A. M. & L. A. Brown, 1929. Control of sex in Cladocera: Crowding the mothers as a means of controlling male production. Physiol. Zool. 2: 80–92.Google Scholar
  4. Black, A. R. & S. I. Dodson, 1990. Demographic costs of Chaoborus-induced phenotypic plasticity in Daphnia pulex. Oecologia 83: 117–122.Google Scholar
  5. Dodson, S. I., 1974. Adaptive change in plankton morphology in response to size-selective predation: A new hypothesis of cyclomorphosis. Limnol. Oceanogr. 19: 721–729.Google Scholar
  6. Dodson, S. I., 1989. The ecological role of chemical stimuli for the zooplankton: predator-induced morphology in Daphnia. Oecologia 78: 361–367.Google Scholar
  7. Green, J., 1954. Size and reproduction in Daphnia magna (Crustacea:Cladocera) Proc. zool. soc. Lond. 124: 535–545.Google Scholar
  8. Goulden, C. E., L. Henry & D. Berrigan, 1987. Egg size, postembryonic yolk, and survival ability. Oecologia 72: 28–31.Google Scholar
  9. Hairston, N. G. Jr. & B. T. De Stasio, Jr., 1988. Rate of evolution slowed by a dormant propagule pool. Nature 336: 239–242.Google Scholar
  10. Hanazato, T., 1990. Induction of helmet development by a Chaoborus factor in Daphnia ambigua during juvenile stages. J. Plankton. Res. 12: 1287–1294.Google Scholar
  11. Havel, J. E., 1987. Predator-induced defenses: A review. pp. 263–278 in W. C. Kerfoot & A. Sih (eds) Predation: Direct and Indirect Impacts on Aquatic Communities. New England Press, Hanover, N.H.Google Scholar
  12. Havel, J. E. & S. I. Dodson, 1984. Chaoborus predation on typical and spined morphs of Daphnia pulex: Behavioral observations. Limnol. Oceanogr. 29: 487–494.Google Scholar
  13. Havel, J. E. & S. I. Dodson, 1987. Reproductive costs of Chaoborus-induced polymorphism in Daphnia pulex. Hydrobiol. 150: 273–281.Google Scholar
  14. Hebert, P. D. N. & P. M. Grewe, 1985. Chaoborus induced shifts in the morphology of Daphnia ambigua. Limnol. Oceanogr. 30: 1291–97.Google Scholar
  15. Hobaek, A. & P. Larsson, 1990. Sex determination in Daphnia magna. Ecology 71: 2255–2268.Google Scholar
  16. Jacobs, J., 1980. Environmental control of cladoceran cyclomorphosis via target-specific growth factors in the animal. In Kerfoot, W. C. (ed.), Evolution and Ecology of Zooplankton Communities. Univ. Press of New England, Hanover, N.H.: 429–437.Google Scholar
  17. Kerfoot, W. C., 1974. Egg size cycle of a cladoceran. Ecology 55: 1259–1270.Google Scholar
  18. Krueger, D. A. & S. I. Dodson, 1981. Embryological induction and predation ecology in Daphnia pulex. Limnol. Oceanogr. 26: 219–223.Google Scholar
  19. Lampert, W. & U. Schober, 1980. The importance of ‘threshold’ food concentrations. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. Univ. Press of New England, Hanover, N.H.Google Scholar
  20. Lubbock, J., 1857. An account of the two methods of reproduction in Daphnia, and of the structure of the ephippium. Phil. Trans. r. Soc., Lond. 57: 79–100.Google Scholar
  21. Lynch, M., L. J. Weider & W. Lampert, 1986. Measurement of the carbon balance in Daphnia. Limnol. Oceanogr. 31: 17–33.Google Scholar
  22. Minitab, L., 1987. Release 6.1.1. Minitab, Inc. 3081 Enterprise Dr., State College, PA. 16801.Google Scholar
  23. Parejko, K. & S. I. Dodson, 1990. Progress towards characterization of a predator/prey kairomone: Daphnia pulex and Chaoborus americanus. Hydrobiol., 198: 51–59.Google Scholar
  24. Parejko, K., 1991a. Predation by chaoborids on typical and spined Daphnia pulex. Freshwat. Biol., 25: 211–217.Google Scholar
  25. Parejko, K. & S. I. Dodson, 1991b. The evolutionary ecology of an antipredator reaction norm: Daphnia pulex and Chaoborus americanus. Evolution, in press.Google Scholar
  26. Riessen, H. P. & W. G. Sprules, 1990. Demographic costs of antipredator defenses in Daphnia pulex. Ecology 71: 1536–1546.Google Scholar
  27. Schwartz, S., 1984. Life history strategies in Daphnia: a review and predictions. Oikos 42: 114–122.Google Scholar
  28. Sih, A., 1987. Predators and prey lifestyles: an evolutionary and ecological overview. In Kerfoot, W. C. & A. Sih (eds) Predation: Direct and Indirect Impacts on Aquatic Communities. Univ. Press of New England, Hanover, N.H.: 203–224.Google Scholar
  29. Snedecor, G. W. & W. G. Cochran, 1980. Statistical Methods, 7th ed. Iowa State Univ. Press, Ames, Iowa.Google Scholar
  30. Tessier, A. J. & N. L. Consolatti, 1989. Variation in offspring size in Daphnia and consequences for individual fitness. Oikos 56: 269–276.Google Scholar
  31. Threlkeld, S., 1979. Estimating cladoceran birth rates: The Importance of egg mortality and the egg age distribution. Limnol. Oceanogr. 24: 601–612.Google Scholar
  32. Threlkeld, S., 1987.Daphnia life history strategies and resource allocation patterns. In Daphnia, Mem. Ist. ital. Idrobiol. 45: 353–366.Google Scholar
  33. Walls, M. & M. Ketolla, 1989. Effects of predator-induced spines on individual fitness in Daphnia pulex. Limnol. Oceanogr. 34: 390–396.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Ken Parejko
    • 1
  1. 1.Department of ZoologyUniversity of WisconsinMadisonUSA

Personalised recommendations