, Volume 228, Issue 1, pp 1–21 | Cite as

Nutrient regeneration processes in bottom sediments in a Po delta lagoon (Italy) and the role of bioturbation in determining the fluxes at the sediment-water interface

  • A. Barbanti
  • V. U. Ceccherelli
  • F. Frascari
  • G. Reggiani
  • G. Rosso


A study on nutrient regeneration processes and a measure of their fluxes at the sediment-water interface was carried out in two different stations of a shallow lagoon of the Po delta river (Italy). A few parameters on the solid fraction (grain-size, porosity, C, N) and pore water profiles of o-P, NH3, NO inf3 sup− , SiO2, Tot-CO2, SO inf4 sup2− , Fe, Mn, Ca, Mg, pH, Eh were determined. At both stations the results were typical for fine sediments rich in organic matter. The ratio of variations of sulphate (ΔSO inf4 sup2− ) to total carbonate demonstrates the main role sulphate reduction plays on the organic matter decay. The use of the ratios of variations of sulphate (ΔSO inf4 sup2− ) to ammonia (ΔNH3) and of sulphate (ΔSO inf4 sup2− ) to phosphate (Δo-P) in pore waters enabled us to calculate the C/N/P of the decomposing organic matter. Obtained C/N/P indicated an enrichment of N and P with regard to C/N/P ratios of the solid fraction, due to the selective stripping of N and P during organic matter mineralization. This phenomenon decreases with depth, where organic matter becomes more refractory. Calculations on saturation degrees have shown the possibility of authigenic calcite, apatite and rhodochrosite precipitation in sediments. Nutrient fluxes were estimated for SiO2, NH3 and o-P by means of benthic chambers and modelling the pore water profiles. The model used for the calculation of fluxes allowed us to account for the bioturbation-irrigation influence near the interface, by means of a cumulative diffusion coefficient. Directly measured fluxes proved to be always significantly greater than the theoretical ones. These differences seem to be due to surface processes which do not affect pore water concentrations (degradation of fresh materials at the interface; micro-bioturbation by small gasteropoda such as Hydrobia ventrosa) and/or to the different concept of the two methods in time and space. Number, size and biomass of macrobenthic species living in the sediment underneath the benthic chambers were determined. The comparison between data on macrobenthic populations and flux values showed a good relationship between the number of organisms and benthic fluxes within each station. However, flux variations between stations are to be attributed mainly to the different arrangement of the tubes of the polychaetes Polydora ciliata in the sediment.

Key words

nutrient regeneration pore water benthic fluxes bioturbation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aller, R. C., 1980a. Diagenetic processes near the sedimentwater interface of Long Island Sound. I: decomposition and nutrient element geochemistry (S,N,P). Adv. Geoph. 22:237–350.Google Scholar
  2. Aller, R. C., 1980b. Diagenetic processes near the sediment-water interface of Long Island Sound. II: Fe and Mn. Adv. Geoph. 22: 351–413.Google Scholar
  3. Aller, R. C., J. E. Mackin & R. T. Cox, 1986. Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of iron-stones. Contin. Shelf Res. 6: 263–289.Google Scholar
  4. Aller, R. C. & P. R. Rude, 1988. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim. Cosmochim. Acta 52: 751–765.Google Scholar
  5. Aquater, 1989. Modello matematico quali-quantitativo della Sacca di Goro. Rel. Assess. Ambiente, December 1989.Google Scholar
  6. Atlas, E. L., 1976. Phosphate equilibria in seawater and interstitial waters. Ph. D. thesis, Oregon State Univ., Corvallis. 154 pp.Google Scholar
  7. Atlas, E. L. & R. M. Pytkowicz, 1977. Solubility of apatites in seawater. Limnol. Oceanogr. 22: 290–300.Google Scholar
  8. Balzer, W., 1984. Organic matter degradation and biogenic element cycling in a neashore sediment (Kiel Bight). Limnol. Oceanogr. 29: 1231–1246.Google Scholar
  9. Bender, M., R. Jahnke, R. Weiss, W. Martin, D. T. Heggie, J. Orchardo & T. Sowers, 1989. Organic carbon oxidation and benthic nitrogen and silica dynamics in San Clemente Basin, a continental borderland site. Geoch. Cosmochim. acta 53: 685–697.Google Scholar
  10. Berelson, W. M., D. E. Hammond & K. S. Johnson, 1987. Benthic fluxes and the cycling of biogenic silica and carbon in two southern California borderland basins. Geochim. Cosmochim. Acta 51: 1345–1363.Google Scholar
  11. Berner, R. A., 1965. Activity coefficients of bicarbonate, carbonate and calcium ions in seawater. Geochim. Cosmochim. Acta 29: 947–965.Google Scholar
  12. Berner, R. A., 1971. Principles of chemical sedimentology. McGraw-Hill. 240 pp.Google Scholar
  13. Berner, R. A., 1974. Kinetics models for the early diagenesis of nitrogen, sulfur, phosphorus and silicon in anoxic marine sediments. In E. D. Goldberg (ed.), The sea, Wiley, New York, 5: 427–450.Google Scholar
  14. Berner, R. A., 1977. Stoichiometric models for nutrient regeneration in anoxic sediments. Limnol. Oceanogr. 22: 781–786.Google Scholar
  15. Berner, R. A., 1980. Early diagenesis: a teoretical approach. Princeton Univ. Press, New York.Google Scholar
  16. Bower, C. E. & T. Holm Hansen, 1980. A salicylate hypochlorite method for determining ammonia in seawater. Can. J. Fish. aquat. Sci. 37: 794–798.Google Scholar
  17. Buffoni, G. & A. Barbanti, 1989. Calcolo della distribuzione di silice, ammoniaca e fosfati nelle acque interstiziali e dei flussi all'interfaccia acqua-sedimento. Tecn. Report n. 22, IGM-CNR, Bologna.Google Scholar
  18. Canfield, D. E., 1989. Reactive iron in marine sediments. Geochim. Cosmochim. Acta 53: 619–632.Google Scholar
  19. Carignan, R., F. Rapin & A. Tessier, 1985. Sediment porewater sampling for metal analysis: a comparison of techniques. Geochim. Cosmochim. Acta 49: 2493–2497.Google Scholar
  20. Corazza, C., M. Mistri & V. U. Ceccherelli, 1989. Osservazioni preliminari sulla dinamica spazio-temporale delle comunità macrobentoniche della Sacca di Goro (Delta del Po). Oebalia 15: 119–128.Google Scholar
  21. Dal Cin, R. & P. Pambianchi, in press. Caratteri granulometrici dei sedimenti della Sacca di Goro.Google Scholar
  22. Davison, W., 1982. Transport of iron and manganese in relation to the shapes of their concentration-depth profiles. Hydrobiologia 92: 463–471.Google Scholar
  23. Donazzolo, R., D. Degobbis, A. Sfrisio, B. Pavoni & A. A. Orio, 1989. Influence of Venice lagoon macrofauna on nutrient exchange at the sediment-water interface. Sci. Tot. Env. 86: 223–238.Google Scholar
  24. Driscoll, E. G., 1975. Sediment-animal-water interaction, Buzzard Bay, Massachusetts. J. Mar. Res. 33: 275–302.Google Scholar
  25. Elderfield, H., N. Luedtke, R. J. McCaffrey & M. Bender, 1981. Benthic fluxes in Narragansett Bay. Am. J. Sci. 281: 768–787.Google Scholar
  26. Emerson, S., 1976. Early diagenesys in anaerobic lake sediments: chemical equilibria in interstitial water. Geochim. Cosmochim. Acta 40: 925–934.Google Scholar
  27. Emerson, S. R., R. R. Jahnke & D. Heggie, 1984. Sediment-water exchange in shallow water estuarine sediments. J. Mar. Res. 47: 709–730.Google Scholar
  28. Froelich, P. N., M. A. Arthur, W. C. Burnett, M. Deakin, V. Hensley, R. Jahnke, L. Kaul, K. H. Kim, K. Roe, A. Soutar & C. Vathakanon, 1988. Early diagenesis of organic matter in Peru continental margin sediments: phosphorite precipitation. In: W. C. Burnett & P. N. Froelich (eds), The origin of marine phosphorite. Mar. Geol. 80: 309–343.Google Scholar
  29. Gieskes, J. M. & W. C. Rogers, 1973. Alkalinity determination in interstitial waters of marine sediments. J. Sedim. Petrol. 43: 272–277.Google Scholar
  30. Goldhaber, M. B., R. C. Aller, J. K. Cockran, J. K. Rosenfeld, C. S. Martens & R. A. Berner, 1977. Sulfate reduction, diffusion and bioturbation in Long Island Sound sediments: report of the FOAM group. Am. J. Sci. 277: 193–237.Google Scholar
  31. Gulbrandsen, R. A., C. E. Roberson & S. T. Neil, 1984. Time and the cristallization of apatite in seawater. Geochim. Cosmochim. Acta 48: 213–218.Google Scholar
  32. Hammond, D. E., C. Fuller, D. Harmon, B. Hartman, M. Korosec, L. G. Miller, R. Rea, S. Warren, W. Berelson & S. W. Hager, 1985. Benthic fluxes in San Francisco Bay. Hydrobiologia 129: 69–90.Google Scholar
  33. Holdren, G. C. & D. E. Armstrong, 1986. Interstitial ion concentrations as an indicator of phosphorus release and mineral formation in lake sediments. In P. G. Sly (ed.), Sediments and water interactions. Springer-Verlag, Berlin, 133–147.Google Scholar
  34. Howarth, R. W., 1978. A rapid precise method for sulphate determination in sea, estuarine and pore waters. Limnol. Oceanogr. 23: 1066–1069.Google Scholar
  35. Ingle, S. E., 1975. Solubility of calcite in the ocean. Mar. Chem. 3: 301–319.Google Scholar
  36. Jahnke, R. A., 1984. The synthesis and solubility of carbonate fluoroapatite. Am. J. Sci. 284: 58–78.Google Scholar
  37. Jahnke, R. A., S. R. Emerson, K. K. Roe & W. C. Burnett, 1983. The present day formation of apatite in Mexican continental margin sediments. Geochim. Cosmochim. Acta 47: 259–266.Google Scholar
  38. Johnson, K. S., 1982. Solubility of rhodochrosite (MnCO3) in water and seawater. Geochim. Cosmochim. Acta 46: 1805–1809.Google Scholar
  39. Kester, D. D., R. H. jr. Byrne & Y. L. Liang, 1975. Redox reactions and solution complexes of iron in marine systems. In Church T. M. (ed), Marine chemistry in the coastal environment. Am. Chem. Assoc. Symp. Ser., 18: 25–79.Google Scholar
  40. Kristensen, E. & F. Andersen, 1987. Determination of organic carbon in marine sediments: a comparison of two CHN-analyzer methods. J. Exp. Mar. Biol. Ecol. 109: 15–23.Google Scholar
  41. Kristensen, E. & T. H. Blackburn, 1987. The fate of organic carbon and nitrogen in experimental marine sediment systems: influence of bioturbation and anoxia. J. Mar. Res. 45: 231–257.Google Scholar
  42. Krom, M. & R. A. Berner, 1980. Adsorption of phosphate in anoxic marine sediments. Limnol. Oceanogr. 25: 797–806.Google Scholar
  43. Krom, M. & R. A. Berner, 1981. The diagenesis of phosphorus in a nearshore sediment. Geochim. Cosmochim. Acta 45: 207–216.Google Scholar
  44. Krom, M. & R. A. Berner, 1983. A rapid method for the determination of organic and carbonate carbon in geochemical samples. J. Sedim. Petrol. 53: 660–663.Google Scholar
  45. Li, Y. & S. Gregory, 1974. Diffusion of ions in sea-water and in deep-sea sediments. Geochim. Cosmochim. Acta 38: 703–714.Google Scholar
  46. Martens, C. S. & R. C. Harriss, 1970. Inhibition of apatite precipitation in the marine environment by magnesium ions. Geochim. Cosmochim. Acta 34: 621–625.Google Scholar
  47. Martens, C. S., R. A. Berner & J. R. Rosenfeld, 1978. Interstitial water chemistry of anoxic Long Island Sound sediments. II. Nutrients regeneration and phosphate removal. Limnol. Oceanogr. 23: 605–617.Google Scholar
  48. McCaffrey, R. J., A. C. Myers, E. Dovey, G. Morrison, M. Bender, N. Luedtke, D. Cullen, P. Froelich & G. Klinkhammer, 1980. The relation between pore water chemistry and benthic fluxes on nutrients and manganese in Narragansett bay, Rhode Island. Limnol. Oceanogr. 25: 31–44.Google Scholar
  49. McConnell, D., 1973. Apatite, its crystal chemistry, mineralogy, utilization and geologic and biologic occurrences. Springer-Verlag, N.Y., 111 pp.Google Scholar
  50. Mehrbach, C., C. H. Culberson, J. E. Hawley & R. M. Pitkowicz, 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18: 897–907.Google Scholar
  51. Murray, J. W., V. Grundmanis & W. N. Smethie, 1978. Interstitial water chemistry in the sediments of Saanich Inlet. Geochim. Cosmochim. Acta 42: 1011–1026.Google Scholar
  52. Nriagu, J. O., 1972. Stability of vivianite and ion-pair formation in the system Fe3(PO4)2-H3PO4-H2O. Geochim. Cosmochim. Acta 36: 459–470.Google Scholar
  53. Price, N. B., 1976. Chemical diagenesis in sediments. In: J. P. Riley & R. Chester (eds), Chemical oceanography, Vol. 6, 2nd edn, Academic Press, 1–58.Google Scholar
  54. Pugnetti, A., C. Corazza & V. U. Ceccherelli, 1991. Dystrophic events in a lagoon of Northern Adriatic Sea: causes and recovery processes. In: O. Ravera (ed.), Terrestrial and aquatic ecosystems: perturbation and recovery, 402–409.Google Scholar
  55. Ray, A. J. & R. C. Aller, 1985. Physical irrigation of relict burrows: implications for sediment chemistry. Mar. Geol. 62: 371–379.Google Scholar
  56. Redfield, A. C., 1958. The biological control of chemical factors in the environment. Am. Sci. 46: 205–222.Google Scholar
  57. Richards, F. A., 1965. Anoxic basins and fjords. In J. P. Riley & G. Skirrow (eds.), Chemical Oceanography, 1. Academic. 611–645.Google Scholar
  58. Rosenfeld, J. K., 1979. Ammonium adsorption in nearshore anoxic sediments. Limnol. Oceanogr. 24: 356–364.Google Scholar
  59. Rosenfeld, J. K., 1981. Nitrogen diagenesis in Long Island Sound sediments. Am. J. Sci. 281: 436–462.Google Scholar
  60. Rutgers van der Loeff, M. M., L. G. Anderson, P. O. Hall, A. Iverfeldt, A. B. Josefson, B. Sundby & S. F. Westerlund, 1984. The asphyxiation technique: an approach to distinguish between molecular diffusion and biologically mediated transport at the sediment-water interface. Limnol. Oceanogr. 29: 675–686.Google Scholar
  61. Ruttenberg, K. C., 1989. Diagenesis and burial of phosphorus in marine sediments. Ph.D. thesis, Yale University.Google Scholar
  62. Sholkovitz, E. R., 1973. Interstitial water chemistry of the Santa Barbara Basin sediments. Geochim. Cosmochim. Acta 37: 2043–2073.Google Scholar
  63. Stumm, W. & P. Baccini, 1978. Man-made perturbation of lakes. In A. Lerman (ed.), Lakes-chemistry, geology, physics, Springer, 91–126.Google Scholar
  64. Stumm, W. & J. O. Leckie, 1971. Phosphate exchange with sediments: its role in the productivity of surface waters. In Proc. 5th Int. Water Poll. Res. Conf., Pergamon Press, III-26/11 – III-26/16.Google Scholar
  65. Sundby, B., L. G. Anderson, P. O. Hall, A. Iverfeldt, M. M. Rutgers van der Loeff & S. F. Westerlund, 1986. The effect of oxygen on release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface. Geochim. Cosmochim. Acta 50: 1281–1288.Google Scholar
  66. Technicon Autoanalyzer Methodology, 1970. Industrial method No. 57–70 W.Google Scholar
  67. Technicon Autoanalyzer Methodology, 1971. Industrial method No. 155–71 W.Google Scholar
  68. Ullman, W. J. & R. C. Aller, 1982. Diffusion coefficients in nearshore marine sediments. Limnology and Oceanography 27 (3): 552–556.Google Scholar
  69. Val Klump, J. & C. S. Martens, 1981. Biogeochemical cycling in an organic rich coastal marine basin — II. Nutrient sediment-water exchange processes. Geochim. Cosmochim. Acta 45: 101–121.Google Scholar
  70. Van Cappelen, P. & R. A. Berner, 1989. Marine apatite precipitation. In: D. L. Miles (ed.), Water-rock interaction. WRI-6 Balkema, Rotterdam.Google Scholar
  71. Van Eck, G. T. M. & J. G. C. Smits, 1986. Calculation of fluxes across the sediment-water interface in shallow lakes. In P. G. Sly (ed.), Sediments and water interactions. Springer-Verlag, Berlin. 289–301.Google Scholar
  72. Vanderborght, J., R. Wollast & G. Billen, 1977. Kinetic models of diagenesis in disturbed sediments. Part 1. Mass transfer properties and silica diagenesis. Limnol. Oceanogr. 22: 787–803.Google Scholar
  73. Viel, M., A. Barbanti, L. Langone, G. Buffoni, D. Paltrinieri & G. Rosso, in press. Nutrient profiles in the sediment pore water of a Po delta lagoon (Italy): methodological considerations and evaluation of benthic fluxes. In press. on Estuar. Coast. Shelf Sci.Google Scholar
  74. Wollast, R. & R. Garrels, 1971. Diffusion coefficient of silica in seawater. Nature Physical Science 229: 94.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • A. Barbanti
    • 1
  • V. U. Ceccherelli
    • 2
  • F. Frascari
    • 1
  • G. Reggiani
    • 2
  • G. Rosso
    • 1
  1. 1.Istituto per la Geologia Marina, CNRBolognaItaly
  2. 2.Istituto di Zoologia, Univ. FerraraFerraraItaly

Personalised recommendations