Advertisement

Hydrobiologia

, Volume 192, Issue 1, pp 77–121 | Cite as

Disturbance and organization of macroalgal assemblages in the Northwest Atlantic

  • A. R. O. Chapman
  • C. R. Johnson
Article

Abstract

Large seaweeds are often structurally dominant in subtidal and intertidal rocky shore benthic communities of the N.W. Atlantic. The mechanisms by which these algal assemblages are maintained are surprisingly different in the two habitats. In the subtidal community, kelps are dominant space competitors in the absence of strong grazing interactions. In contrast, the large perennial seaweeds of intertidal zones (fucoids and Chondrus crispus) are competitively inferior to both sessile filter feeders and ephemeral, pioneer algal species. Intertidal seaweed beds are maintained by carnivory of whelks, which reduces filter feeder populations, and by herbivorous periwinkles which reduce ephemeral algal populations. Through most of the intertidal zone, disturbance, both biological and physical, dictates which species shall compete and equilibrium conditions obtain subsequently.

The roles of subtidal consumers are quite different. Sea urchins are the major algal herbivores and these voracious animals maintain an equilibrium state in which large tracts of subtidal coralline pavement are kept free of kelp forests. Urchins do not seem to play a successional facilitative role for kelps in the way that periwinkles do for fucoids in the intertidal. Control of herbivore populations is thus a key to the maintenance of subtidal foliose algal beds. It is clear that parasitic amoebas can decimate sea urchin populations so that kelp forest dominance is assured. However, the importance of carnivory in limiting urchins in the subtidal community is unclear in the absence of appropriate manipulation experiments. It is possible that carnivorous decapods and fin fish control sea urchin populations and hence foliose algal abundance, but this must remain speculative. The seaweed-dominated state of the subtidal system is an alternative equilibrium condition to the urchin/coralline alga configuration. The structure of the kelp beds is relatively uniform in responding to frequent small-scale, infrequent large-scale, or no, disturbance.

Key words

Northwest Atlantic intertidal subtidal disturbance biological interactions community organization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adey, W. H., 1970. The effects of light and temperature on growth rates in boreal-subarctic crustose corallines. J. Phycol. 6: 269–276.Google Scholar
  2. Anderson, M. R., A. Cardinal & J. Larochelle, 1981. An alternate growth pattern for Laminaria longicruris. J. Phycol. 17: 405–411.Google Scholar
  3. Ayling, A. M., 1981. The role of biological disturbance in temperate subtidal encrusting communities. Ecology 62: 830–847.Google Scholar
  4. Bernstein, B. B., S. C. Schroeter & K. H. Mann, 1983. Sea urchin (Strongylocentrotus droebachiensis) aggregating behaviour investigated by a subtidal multifactorial experiment. Can. J. Fish. aquat. Sci. 40: 1975–1986.Google Scholar
  5. Bernstein, B. B., B. E. Williams & K. H. Mann, 1981. The role of behavioural responses to predators in modifying urchins' (Strongylocentrotus droebachiensis) destructive grazing and seasonal foraging patterns. Mar. Biol. 63: 39–49.Google Scholar
  6. Bertness, M. D., P. O. Yund & A. F. Brown, 1983. Snail grazing and the abundance of algal crusts on a sheltered New England rocky beach. J. exp. mar. Biol. Ecol. 71: 147–164.Google Scholar
  7. Bird, C. J., M. Greenwell & J. McLachlan, 1983. Benthic marine algal flora of the north shore of Prince Edward Island (Gulf of St. Lawarence), Canada. Aquat. Bot. 16: 315–335.Google Scholar
  8. Brady-Campbell, M. M., D. B. Campbell & M. H. Harlin (1984). Productivity of kelp (Laminaria spp.) near the southern limit in the Northwestern Atlantic Ocean. Mar. Ecol. Prog. Ser. 18: 79–88.Google Scholar
  9. Breen, P. A., 1974. Relations among lobsters, sea urchins and kelp in Nova Scotia. Ph.D. dissertation, Dalhousie Univ., Halifax, N.S., 198 pp.Google Scholar
  10. Breen, P. A., 1980. Relations among lobster, sea urchins, and kelp in Nova Scotia. Can. Tech. Rep. Fish. Aquat. Sci. 954: 24–47.Google Scholar
  11. Breen, P. A. & K. H. Mann, 1976a. Changing lobster abundance and the destruction of kelp beds by sea urchins. Mar. Biol. 34: 137–142.Google Scholar
  12. Breen, P. A. & K. H. Mann, 1976b. Destructive grazing of kelp by sea urchins in eastern Canada. J. Fish Res. Bd Can. 33: 1278–1283.Google Scholar
  13. Cancino, J. & B. Santelices, 1981. The ecological importance of kelp-like holdfasts as a habitat of invertebrates in central Chile. Xth Interat. Seaweed Symp., Walter de Gruyter, Berlin: 241–246.Google Scholar
  14. Carter, J. A. & D. H. Steele, 1982. Stomach contents of immature lobsters (Homarus americanus) from Placentia Bay, Newfoundland. Can. J. Zool. 60: 337–347.Google Scholar
  15. Chapman, A. R. O., 1981. Stability of sea urchin dominated barren grounds following destructive grazing of kelp in St. Margaret's Bay, eastern Canada. Mar. Biol. 62: 307–311.Google Scholar
  16. Chapman, A. R. O., 1984. Reproduction, recruitment and mortality in two species of Laminaria in southwest Nova Scotia. J. exp. mar. Biol. Ecol. 78: 99–109.Google Scholar
  17. Chapman, A. R. O. & J. S. Craigie, 1977. Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40: 197–205.Google Scholar
  18. Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310.Google Scholar
  19. Connell, J. H., 1979. Tropical rain forests and coral reefs as open non-equilibrium systems. In Anderson, R. M., Turner B. D. & L. R. Taylor (eds), Population Dynamics, 20th Symp. Brit. Ecol. Soc., Blackwell, Lond.: 141–163.Google Scholar
  20. Connell, J. H. & M. J. Keough, 1985. Disturbance and patch dynamics of subtidal marine animals on hard substrata. In Pickett, S. T. A. & P. S. White (eds), The Ecology of Natural disturbance and Patch Dynamics, Academic Press, Orlando: 125–151.Google Scholar
  21. Dayton, P. K., 1971. Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 41: 351–389.Google Scholar
  22. Dayton, P. K., 1985. Ecology of kelp communities. Annu. Rev. Ecol. Syst. 16: 215–45.Google Scholar
  23. Dayton, P. K., V. Currie, T. Gerrodette, B. D. Keller, R. Rosenthal & D. Ven Tresca, 1984. Patch dynamics and stability of some California kelp communities. Ecol. Monogr. 54: 253–289.Google Scholar
  24. Davis, A. N. & R. T. Wilce, 1987a, Floristics, phenology, and ecology of the sublittoral marine algae in an unstable cobble habitat (Plum Cove, Cape Ann, Massachusetts, USA). Phycologia 26: 23–34.Google Scholar
  25. Davis, A. N. & R. T. Wilce, 1987b. Algal diversity in relation to physical diversity: a mosaic of successional stages in a subtidal cobble habitat. Mar. Ecol. Prog. Ser. 37: 229–237.Google Scholar
  26. Dethier, M. N., 1984. Disturbance and recovery in intertidal pools: maintenance of mosaic patterns. Ecol. Monogr. 54: 99–118.Google Scholar
  27. De Wit, C. T., 1960. On competition. Versl. Landouwk. Onderzoek 66: 1–82.Google Scholar
  28. Doty, M. S., J. F. Caddy & B. Santelices, 1987. Case studies on seven commercial seaweed resources. FAO Fisheries Technical Pap. 281: 1–311.Google Scholar
  29. Dring, M. J., 1982. The biology of marine plants. Edward Arnold, London, England, 199 pp.Google Scholar
  30. Ebert, T. A., 1983. Recruitment in echinoderms. In: Jangoux, M. & J. M. Lawrence (ed's), Echinoderm Studies Vol. 1, Balkema, Rotterdam: 169–203.Google Scholar
  31. Ebert, T. A. & M. P. Russell, 1988. Latitudinal variation in size structure of the west coast purple sea urchin: A correlation with headlands. Limnol. Oceanogr. 33: 286–294.Google Scholar
  32. Edelstein, T., Craigie, J. S. & J. McLachlan, 1969. Preliminary survey of the sublittoral flora of Halifax county. J. Fish Res. Bd Can. 26: 2703–2713.Google Scholar
  33. Edwards, D. C., D. O. Conover & F. Sutter, 1982. Mobile predators and the structure of marine intertidal communities. Ecology 63: 1175–1180.Google Scholar
  34. Elner, R. W., 1980. Predation on the sea urchin (Strongylocentrotus droebachiensis) by the American lobster (Homarus americanus) and the rock crab (Cancer irroratus). Can. Tech. Rep. Fish. Aquat. Sci. 954: 48–91.Google Scholar
  35. Elner, R. W. & A. Campbell, 1987. Natural diets of lobster Homarus americanus from barren ground and macroalgal habitats off southwestern Nova Scotia, Canada, Mar. Ecol. Prog. Ser. 37: 131–140.Google Scholar
  36. Espinoza, J. & A. R. O. Chapman, 1983. Ecotypic differentiation of Laminaria longicruris in relation to seawater nitrate concentration. Mar. Biol. 74: 213–218.Google Scholar
  37. Evans, P. D. & K. H. Mann, 1977. Selection of prey by American lobsters (Homarus americanus) when offered a choice between sea urchins and crabs. J. Fish Res. Bd Can. 34: 2203–2207.Google Scholar
  38. Fralick, R. A., K. W. Turgeon & A. C. Mathieson, 1974. Destruction of kelp populations by Lacuna vincta (Montagu). Nautilus 88: 112–114.Google Scholar
  39. Gagné, J. A., K. H. Mann & A. R. O. Chapman, 1982. Seasonal patterns of growth and storage in Laminaria longicruris in relation to differing patterns of availability of nitrogen in the water. Mar. Biol. 69: 91–101.Google Scholar
  40. Gerard, V. A. & K. H. Mann, 1979. Growth and production of Laminaria longicruris (Phaeophyta) populations exposed to different intensities of water movement. J. Phycol. 15: 33–41.Google Scholar
  41. Ghelardi, R. J., 1971. Species structure of the animal community that lives in Macrocystis pyrifera holdfasts. In: North, W. J. (ed.), The Biology of Giant Kelp Beds (Macrocystis) in California, Beiheft. zur Nova Hedwiga, suppl. 32: 381–420.Google Scholar
  42. Harper, J. L., 1977. Population Biology of Plants. Academic Press, London, 892 pp.Google Scholar
  43. Harrold, C. & D. C. Reed, 1985. Food availability, sea urchin grazing, and kelp forest community structure. Ecology 66: 1160–1169.Google Scholar
  44. Hart, M. W. & R. E. Scheibling, 1988. Heat waves, baby booms and the destruction of kelp beds by sea urchins. Mar. Biol. 99: 167–176.Google Scholar
  45. Hawkins, S. J. & R. G. Hartnoll, 1983. Grazing of intertidal algae by marine invertebrates. Ocean. Mar. Biol. Ann. Rev. 21: 195–282.Google Scholar
  46. Hicks, G. R. F., 1985. Meiofauna associated with rocky shore algae. In Moore, P. G. & Seed, R. (eds), The Ecology of Rocky Coasts, Hodder and Stoughton, Lond.: 36–56.Google Scholar
  47. Himmelman, J. H., 1980. The role of the green sea urchin, Strongylocentrotus droebachiensis, in the rocky subtidal region of Newfoundland. Can. tech. Rep. Fish. Aquat. Sci. 954: 92–119.Google Scholar
  48. Himmelman, J. H., 1984. Urchin feeding and macroalgal distribution in Newfoundland, eastern Canada. Naturaliste can. (Rev. Écol. Syst.) 111: 337–348.Google Scholar
  49. Himmelman, J. H., 1986. Population biology of green sea urchins on rocky barrens. Mar. Ecol. Prog. Ser. 33: 295–306.Google Scholar
  50. Himmelman, J. H. & Y. Lavergne, 1985. Organization of rocky subtidal communities in the St. Lawrence Estuary. Naturaliste can. (Rev. Écol. Syst.) 112: 143–154.Google Scholar
  51. Himmelman, J. H., Y. Lavergne, F. Axelsen, A. Cardinal & E. Bourget, 1983a. Sea urchins in the St. Lawrence Estuary: their abundance, size structure, and suitability for commercial exploitation. Can. J. Fish. aquat. Sci. 40: 474–486.Google Scholar
  52. Himmelman, J. H., A. Cardinal & E. Bourget, 1983b. Community development following removal of urchins, Strongylocentrotus droebachiensis, from the rocky subtidal zone of the St. Lawrence Estuary, eastern Canada. Oecologia 59: 27–39.Google Scholar
  53. Himmelman, J. H. & D. H. Steele, 1971. food and predators of the green sea urchin Strongylocentrotus droebachiensis in Newfoundland waters. Mar. Biol. 9: 315–322.Google Scholar
  54. Hirtle, R. W. M. & K. H. Mann, 1978. Distance chemoreception and vision in the selection of prey by American lobster (Homarus americanus). J. Fish Res. Bd Can. 35: 1006–1008.Google Scholar
  55. Hoek, C. van den, 1975. Phytogeographic provinces along the coasts of the northern Atlantic Ocean. Phycologia 14: 317–330.Google Scholar
  56. Hooper, R., 1980. Observations on algal-grazer interactions in Newfoundland and Labrador. Can. Tech. Rep. Fish. Aquat. Sci. 954, pp. 120–124.Google Scholar
  57. Hutchinson, G. E., 1959. Homage to Santa Rosalina, or why are there so many kinds of animals? Am. Nat. 93: 145–159.Google Scholar
  58. Johansen, J., 1925. Natural history of the cunner (Tautogolabrus adspersus Walbaum). Contrib. Can. Biol. New. Ser. 2: 423–468.Google Scholar
  59. Johnson, C. R., 1984. Ecology of the kelp Laminaria longicruris and its principal grazers in the rocky subtidal of Nova Scotia. Ph.D. dissertation, Dalhousie Univ., Halifax, N.S., 280 pp.Google Scholar
  60. Johnson, C. R. & K. H. Mann, 1982. Adaptations of Strongylocentrotus droebachiensis for survival on barren grounds in Nova Scotia. In: Lawrence, J. M. (ed), International Echinoderms Conference, Tampa Bay, Balkema, Rotterdam: 277–283.Google Scholar
  61. Johnson, C. R. & K. H. Mann, 1986a. The crustose coralline alga, Phymatolithon Foslie, inhibits the overgrowth of seaweeds without relying on herbivores. J. exp. mar. Biol. Ecol. 96: 127–146.Google Scholar
  62. Johnson, C. R. & K. H. Mann, 1986b. The importance of plant defence abilities to the structure of subtidal seaweed communities: the kelp Laminaria longicruris de la Pylaie survives grazing by the snail Lacuna vincta (Montagu) at high population densities. J. exp. mar. Biol. Ecol. 97: 231–267.Google Scholar
  63. Johnson, C. R. & K. H. Mann, 1988. Diversity, patterns of adaptation, and stability of Nova Scotian kelp beds. Ecol. Monogr. in press.Google Scholar
  64. Jones, G. M., 1985. Paramoeba invadens n. sp. (Amoebida, Paramoebidae), a pathogenic amoeba from the sea urchin, Strongylocentrotus droebachiensis, in eastern Canada. J. Protozool. 32: 564–569.Google Scholar
  65. Jones, G. M., A. J. Hebda, R. E. Scheibling & R. J. Miller, 1985. Histopathology of the disease causing mass mortality of sea urchins (Strongylocentrotus droebachiensis) in Nova Scotia. J. Invert. Path. 45: 260–271.Google Scholar
  66. Jones, G. M. & R. E. Scheibling, 1985. Paramoeba sp. (Amoebida, Paramoebidae) as the possible causative agent of sea urchin mass mortality in Nova Scotia. J. Parasitol. 71: 559–565.Google Scholar
  67. Jones, L. G., 1971. Studies on selected small herbivorous invertebrates inhabiting Macrocystis canopies and hold-fasts in southern California kelp beds. In North, W. J. (ed.), The Biology of Giant Kelp Beds (Macrocystis) in California, Beiheft. zur Nova Hedwiga, suppl. 32: 343–367.Google Scholar
  68. Keats, D. W., 1986. Comment on ‘Seaweeds, sea urchins, and lobsters: a reappraisal’ by R. J. Miller, Can J. Fish. aquat. Sci. 43: 1675–1676.Google Scholar
  69. Keats, D. W., G. R. South & D. H. Steele, 1982. The occurrence of Agarum cribrosum (Mert.) Bory (Phaeophyta, Laminariales) in relation to some of its competitors and predators in Newfoundland. Phycologia 21: 189–191.Google Scholar
  70. Keats, D. W., G. R. South & D. H. Steele, 1985a. Algal biomass and diversity in the upper subtidal at a pack-ice disturbed site in eastern Newfoundland. Mar. Ecol. Prog. Ser. 25: 151–158.Google Scholar
  71. Keats, D. W., G. R. South & D. H. Steele, 1985b. Ecology of juvenile green sea urchins (Strongylocentrotus droebachiensis) at an urchin dominated sublittoral site in eastern Newfoundland. In Keegan, B. F. & D. S. O'Connor (ed's), Echinodermata, Proc. 5th Int. Echinoderm Conf., Balkema, Rotterdam: 295–302.Google Scholar
  72. Keats, D. W., D. H. Steele & G. R. South, 1984. Depth-dependent reproductive output of the green sea urchin, Strongylocentrotus droebachiensis (O. F. Müller), in relation to the nature and availability of food. J. exp. mar. Biol. Ecol. 80: 77–91.Google Scholar
  73. Larson, B. R., R. L. Vadas & M. Keser, 1980. Feeding and nutritional ecology of the sea urchin Strongylocentrotus droebachiensis in Maine, USA. Mar. Biol. 59: 49–62.Google Scholar
  74. Littler, M. M., P. R. Taylor & D. S. Littler, 1983. Algal resistance to herbivory on a Caribbean barrier reef. Cor. Reef. 2: 111–118.Google Scholar
  75. Lobban, C. S., P. J. Harrison & M. J. Duncan, 1985. The physiological ecology of seaweeds. Cambridge University Press, Cambridge, England.Google Scholar
  76. Lubchenco, J., 1978. Plant species diversity in a marine intertidal community: Importance of herbivore food preference and algalv competitive abilities. Am. Nat. 112: 23–39.Google Scholar
  77. Lubchenco, J., 1980. Algal zonation in the New England rocky intertidal community: An experimental analysis. Ecology 61: 333–344.Google Scholar
  78. Lubchenco, J., 1983. Effects of grazers and algal competitors on fucoid colonization in tide pools. J. Phycol. 18: 544–550.Google Scholar
  79. Lubchenco, J., 1983. Littorina and Fucus: Effects of herbivores, substratum heterogeneity, and plant escapes during succession. Ecology 64: 1116–1123.Google Scholar
  80. Lubchenco, J., 1986. Relative importance of competition and predation: Early colonization by seaweeds in New England. In J. Diamond & T. J. Case (eds) Community Ecology. Harper & Row, New York: 537–555.Google Scholar
  81. Lubchenco, J. & B. A. Menge, 1978. Community development and persistence in a low rocky intertidal zone. Ecol. Monogr. 48: 67–94.Google Scholar
  82. MacFarlane, C., 1952. A survey of certain seaweeds of commercial importance in southwest Nova Scotia. Can. J. Bot. 30: 78–97.Google Scholar
  83. Mann, K. H., 1972a. Ecological energetics of the seaweed zone in a marine bay on the Atlantic coast of Canada. I. Zonation and biomass of seaweeds. Mar. Biol. 12: 1–10.Google Scholar
  84. Mann, K. H., 1972b. Ecological energetics of the sea-weed zone in a marine bay on the Atlantic coast of Canada. II. Productivity of the seaweeds. Mar. Biol. 14: 199–209.Google Scholar
  85. Mann, K. H., 1977. Destruction of kelp-beds by sea-urchins: a cyclical phenomenon or irreversible degradation? Helgoländer wiss. Meeresunters. 30: 455–467.Google Scholar
  86. Mann, K. H., 1985. Invertebrate behaviour and the structure of marine benthic communities. In Sibly, R. M. a R. H. Smith (ed's), Behavioural Ecology: Ecological Consequences of Adaptive Behaviour, 25th Symp. British Ecol. Soc., Blackwell, Oxford: 227–246.Google Scholar
  87. Mann, K. H. & P. A. Breen, 1972. The relation between lobster abundance, sea urchins, and kelp beds. J. Fish Res. Bd Can. 29: 603–609.Google Scholar
  88. Menge, B. A., 1976. Organization of the New England rocky intertidal community: Role of predation, competition and environmental heterogeneity. Ecol. Mongr. 46: 355–393.Google Scholar
  89. Menge, B. A., 1978. Predation intensity in a rocky intertidal community: relation between predator foraging activity and environmental harshness. Oecologia (Berl.) 34: 1–16.Google Scholar
  90. Menge, B. A. & J. Lubchenco, 1981. Community organization in temperate and tropical rocky intertidal habitats: Prey refuges in relation to consumer pressure gradients. Ecol. Monogr. 51: 429–450.Google Scholar
  91. Menge, B. A. & J. P. Sutherland, 1976. Species diversity gradients: Synthesis of the roles of predation, competition, and temporal heterogeneity. Am. Nat. 110: 351Google Scholar
  92. Menge, B. A. & J. P. Sutherland, 1987. Community regulation: variation in disturbance, competition and predation in relation to environmental stress and recruitment. Am. Nat. 130: 730–757.Google Scholar
  93. Miller, R. J., 1985a. Succession in sea urchin and seaweed abundance in Nova Scotia, Canada. Mar. Biol. 84: 275–286.Google Scholar
  94. Miller, R. J., 1985b. Seaweeds, sea urchins, and lobsters: a reappraisal. Can. J. Fish. aquat. Sci. 42: 2061–2072.Google Scholar
  95. Miller, R. J. & A. G. Colodey, 1983. Widespread mass mortalities of the green sea urchin in Nova Scotia, Canada. Mar. Biol. 73: 263–267.Google Scholar
  96. Miller, R. J., K. H. Mann & D. J. Scarratt, 1971. Production potential of a seaweed-lobster community in eastern Canada. J. Fish Res. Bd Can. 28: 1733–1738.Google Scholar
  97. Mohn R. K. & R. J. Miller, 1987. A ration-based model of a seaweed-sea urchin community. Ecol. Model. 37: 249–267.Google Scholar
  98. Moore, D. S. & R. J. Miller, 1983. Recovery of macroalgae following widespread sea-urchin mortality with a description of the nearshore hard-bottom habitat on the Atlantic coast of Nova Scotia. Can Tech. Rep. Fish. Aquat. Sci. 1230.Google Scholar
  99. Newell, R. C. & J. G. Field, 1983a. The contribution of bacteria and detritus to carbon and nitrogen flow in a benthic community. Mar. Biol. Lett. 4: 23–36.Google Scholar
  100. Newell, R. C. & J. G. Field, 1983b. Relative flux of carbon and nitrogen in a kelp-dominated system. Mar. Biol. Lett. 4: 249–257.Google Scholar
  101. Newell, R. C., J. G. Field & C. L. Griffiths, 1982. Energy balance and significance of micro-organisms in a kelp bed community. Mar. Ecol. Prog. Ser. 8: 103–113.Google Scholar
  102. Novaczek, I. & J. McLachlan, 1986. Recolonization by algae of the sublittoral habitat of Halifax county, Nova Scotia, following the demise of sea urchins. Bot. Mar. 29: 69–73.Google Scholar
  103. Ojeda, F. J. & B. Santelices, 1984. Invertebrate communities in holdfasts of the kelp Macrocystis pyrifera from southern Chile. Mar. Ecol. Prog. Ser. 16: 65–73.Google Scholar
  104. Padilla, D. K., 1984. The importance of form: differences in competitive ability, resistance to consumers and environmental stress in an assemblage of coralline algae. J. exp. mar. Biol. Ecol. 79: 105–127.Google Scholar
  105. Paine, R. T., 1966. Food web complexity and species diversity gradients. Am. Nat. 100: 65–75.Google Scholar
  106. Paine, R. T., 1980. Food webs: linkage, interaction strength and community infrastructure. J. anim. Ecol. 49: 667–685.Google Scholar
  107. Paine, R. T. & S. A. Levin, 1981. Intertidal landscapes: disturbance and the dynamics of pattern. Ecol. Monogr. 51: 145–178.Google Scholar
  108. Parker, T., 1987. The roles of gammarid amphipods and littorinid snails in high intertidal tidepool communities dominated by Fucus distichus. M.Sc. thesis, Dalhousie University, Halifax, Nova Scotia, Canada.Google Scholar
  109. Pearse, J. S. & A. H. Hines, 1987. Long-term population dynamics of sea urchins in a central California kelp forest: rare recruitment and rapid decline. Mar. Ecol. Prog. Ser. 39: 275–283.Google Scholar
  110. Petrie, B., B. J. Topliss & D. G. Wright, 1987. Coastal upwelling and eddy development off Nova Scotia. J. Geophys. Res. 29: 12,979–12,991.Google Scholar
  111. Pickett, S. T. A. & P. S. White, 1985. Patch dynamics: a synthesis. In Pickett, S. T. A. & P. S. White (eds), The Ecology of Natural Disturbance and Patch Dynamics, Academic Press, Orlando: 371–384.Google Scholar
  112. Raymond, B. G. & R. E. Scheibling, 1987. Recruitment and growth of the sea urchin Strongylocentrotus droebachiensis (Muller) following mass mortalities off Nova Scotia, Canada. J. exp. mar. Biol. Ecol. 108: 31–54.Google Scholar
  113. Reed, D. C. & M. S. Foster, 1984. The effects of canopy shading on algal recruitment and growth in a giant kelp forest. Ecology 65: 937–948.Google Scholar
  114. Scarratt, D. J., 1980. The food of lobsters. Can. Tech. Rep. Fish. Aquat. Sci. 954: 66–91.Google Scholar
  115. Scheibling, R. E., 1986. Increased macroalgal abundance following mass mortalities of sea urchins (Strongylocentrotus droebachiensis) along the Atlantic coast of Nova Scotia. Oecologia 68: 186–198.Google Scholar
  116. Scheibling, R. E. & R. L. Stephenson, 1984. Mass mortality of Strongylocentrotus droebachiensis (Echinodermata: Echinoidea) off Nova Scotia, Canada. Mar. Biol. 78: 153–164.Google Scholar
  117. Schiel, D. R. & M. S. Foster, 1986. The structure of subtidal algal stands in temperate waters. Oceanogr. Mar. Biol. Ann. Rev. 24: 265–307.Google Scholar
  118. Schonbeck, M. & T. A. Norton, 1978. Factors controlling the upper limits of fucoid algae on the shore. J. exp. mar. Biol. Ecol. 31: 303–313.Google Scholar
  119. Sebens, K. P., 1985a. Community ecology of vertical rock walls in the Gulf of Maine, U.S.A.: small-scale processes and alternative community states. In Moore, P. G. & Seed, R. (ed's), The Ecology of Rocky Coasts, Hodder & Stoughton, Lond.: 346–371.Google Scholar
  120. Sebens, K. P., 1985b. The ecology of the rocky subtidal zone. Am. Sci. 73: 548–557.Google Scholar
  121. Sebens, K. P., 1986. Spatial relations among encrusting marine organisms in the New England subtidal zone. Ecol. Monogr. 56: 73–96.Google Scholar
  122. Sheppard, C. R. C., D. J. Bellamy & A. L. S. Sheppard, 1980. Study of the fauna inhabiting the holdfasts of Laminaria hyperborea (Gunn) Fosl. along some environmental and geographical gradients. Mar. Envir. Res. 4: 25–51.Google Scholar
  123. Smith, B. D., 1985. Recovery following experimental harvesting of Laminaria longicruris and L. digitata in southwestern Nova Scotia. Helgoländer wiss. Meeresunters. 39: 83–101.Google Scholar
  124. Smith, B. D., 1986. Implications of population dynamics and interspecific competition for harvest management of the seaweed Laminaria. Mar. Ecol. Prog. Ser. 33: 7–18.Google Scholar
  125. Smith, R. E. & R. H. Loucks, 1980. A literature and photoassessment of the marine plant biomass of eastern Canada. Unpublished report to the Atlantic Research Laboratory, National Research Council of Canada, 235 pp.Google Scholar
  126. Sousa, W. P., 1979a. Disturbance in marine intertidal boulder fields: the non-equilibrium maintenance of species diversity. Ecology 60: 1225–1239.Google Scholar
  127. Sousa, W. P., 1979b. Experimental investigations of disturbance and ecological succession in a rocky intertidal algal community. Ecol. Monogr. 49: 227–254.Google Scholar
  128. Sousa, W. P., 1984a. Intertidal mosaics: patch size, propagule availability, and spatially variable patterns of succession. Ecology 65: 1918–1935.Google Scholar
  129. Sousa, W. P., 1984b. The role of disturbance in natural communities. Annu. Rev. Ecol. Syst. 15: 353–391.Google Scholar
  130. Steneck, R. S., 1982. A limpet coralline alga association: adaptations and defenses between a selective herbivore and its prey. Ecology 63: 507–522.Google Scholar
  131. Steneck, R. S., 1983. Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9: 44–61.Google Scholar
  132. Stephenson, T. A. & A. Stephenson, 1972. Life between the tidemarks on rocky shores. W. H. Freeman and Co., San Francisco, 425 pp.Google Scholar
  133. Strathman, R. R., 1978. Length of pelagic period in echinoderms with feeding larvae from the Northeast Pacific. J. exp. mar. Biol. Ecol. 34: 23–27.Google Scholar
  134. Stuart, V., J. G. Field & R. C. Newell, 1982. Evidence for absorption of kelp detritus by the ribbed mussel Aulacomyater using a new 51Cr-labelled microsphere technique. Mar. Ecol. Prog. Ser. 9: 263–271.Google Scholar
  135. Tegner, M. J. & P. K. Dayton, 1981. Population structure, recruitment and mortality of two sea urchins (Strongylocentrotus franciscanus and S. purpuratus) in a kelp forest. Mar. Ecol. Prog. Ser. 5: 255–268.Google Scholar
  136. Thomas, M. L. H. & F. H. Page, 1983. Grazing by the gastropod, Lacuna vincta, in the lower intertidal area at Musquash Head, New Brunswick, Canada. J. mar. biol. Ass. U.K. 63: 725–736.Google Scholar
  137. Tremblay, C. & A. R. O. Chapman, 1980. The local occurrence of Agarum cribrosum in relation to the presence or absence of its competitors and predators. Proc. N.S. Inst. Sci. 30: 165–170.Google Scholar
  138. Turner, V. G., 1965. Some aspects of development in two echnoids. Am. Zool. 5: 198.Google Scholar
  139. Vadas, R. L., 1968. The ecology of Agarum and the kelp bed community. Ph.D. dissertation, Univ. Washington, Seattle, Washington, 280 pp.Google Scholar
  140. Vadas, R. L., 1977. Preferential feeding: an optimization strategy in sea urchins. Ecol. Monogr. 47: 337–371.Google Scholar
  141. Vadas, R. L., R. W. Elner, P. E. Garwood & I. G. Gabb, 1986. Experimental evaluation of aggregation behaviour in the sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 90: 433–448.Google Scholar
  142. Wharton, W. G. & K. H. Mann, 1981. Relationship between destructive grazing by the sea urchin, Strongylocentrotus droebachiensis, and the abundance of American lobster, Homarus americanus, on the Atlantic coast of Nova Scotia. Can. . J. Fish. aquat. Sci., 38: 1339–1349.Google Scholar
  143. Witman, J. D., 1985. Refuges, biological disturbance, and rocky subtidal community structure in New England. Ecol. Monogr. 55: 421–445.Google Scholar
  144. Witman, J. D., 1987. Subtidal coexistence: storms, grazing mutualism, and the zonation of kelps and mussels. Ecol. Monogr. 57: 167–187.Google Scholar
  145. Wulff, F. V. & J. G. Field, 1983. Importance of different trophic pathways in a nearshore benthic community under upwelling and downwelling conditions. Mar. Ecol. Prog. Ser. 12: 217–228.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • A. R. O. Chapman
    • 1
  • C. R. Johnson
    • 2
  1. 1.Department of BiologyDalhousie UniversityHalifaxCanada
  2. 2.Australian Institute of Marine ScienceTownsville M.C.Australia

Personalised recommendations