Advertisement

Hydrobiologia

, Volume 192, Issue 1, pp 35–57 | Cite as

Patterns of organizations of intertidal and shallow subtidal vegetation in wave exposed habitats of central Chile

  • B. Santelices
Article

Abstract

Wave-exposed rocky intertidal habitats of central Chile exhibit zonation of algal morphologies rather than strict patterns of species zonation. In low shore areas, there is a vertical sequence of perennial belts of calcareous crusts, kelp-like forms and expanded cushions or non-calcareous crusts. The calcareous crusts are represented by species of Mesophyllum, the kelp-like forms include Lessonia nigrescens and Durvillaea antarctica, while the cushions are represented by Gelidium chilense and G. lingulatum and the noncalcareous, expanded crusts by Codium dimorphum. Thin and thick blades, represented by Iridaea laminarioides, Ulva rigida and Porphyra columbia and filamentous forms including Ceramium rubrum, Centroceras clavulatum and Polysiphonia spp. are more patchy than the lower, perennial belts. They may, however, form distinct temporal monocultures at upper intertidal levels. Upper and lower limits of the various zones are set by interactions of several factors, the relative importance of which can change seasonally. When some of the factors restricting species distribution are experimentally removed, other interactions among factors become limiting.

Within each zone, species are morphologically similar, with the abundance of species being regulated by symmetric competitive interactions. Competition is often asymmetric at the boundaries of zones except when adults of small-sized forms interact with morphologically similar juveniles of larger forms. Irrespective of their extremely different morphologies, the permanent, zone-forming algal species generally combine escape from grazers or defensive adaptations with clear competitive abilities. Nevertheless, there is a clear competitive hierarchy which is expressed in vertical displacements and zonation. The lowershore habitats could potentially be occupied by any of the different types of algae. Fast growth and large size allow the kelps to occupy this zone pushing the calcareous crust dominated-zone down into shallow subtidal areas and displacing the cushions and fleshy crusts into the low and middle intertidal regions. In turn, these last forms can displace thick and thin foliose forms and filaments to upper levels on the shore. Displaced forms may exist as patches at various levels of the shore.

Keywords

Ulva Intertidal Level Calcareous Crust Defensive Adaptation Rocky Intertidal Habitat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alveal, K. 1970. Estudios ficoecológicos en la región costera de Valparaíso. Rev. Biol. mar., Valparaíso 14: 85–119Google Scholar
  2. Alveal, K., 1971. El ambiente costero de Montemar y su expresión biológica. Rev. Biol. mar., Valparaíso 14: 85–119Google Scholar
  3. Baker, S. M., 1909. On the causes of the zoning of brown seaweeds on the seashore. New Phytol. 8: 196–202Google Scholar
  4. Black, R., 1974. Some biological interactions affecting intertidal populations of the kelp Egregia laevigata. Mar. Biol. 28: 189–198Google Scholar
  5. Burrows, E. M. & S. M. Lodge, 1951. Autoecology and the species problem in Fucus. J. mar. biol. Ass. U.K. 30: 161–176Google Scholar
  6. Burrows, E. M. & S. M. Lodge, 1953. Intertidal plant populations with special reference to the genus Fucus. Proc. int. Seaweed Symp. 1: 6Google Scholar
  7. Buschmann, A. & B. Santelices, 1987. Micrograzers and spore release in Iridaea laminarioides Bory (Rhodophyta: Gigartinales). J. exp. mar. Biol. Ecol. 108: 171–179Google Scholar
  8. Castilla, J. C., 1979. Características bióticas del Pacifico Sur-Oriental, con especial referencia al sector chileno. Revista de la Comisión Permanente del Pacifico Sur 10: 167–182Google Scholar
  9. Castilla, J. C., 1981. Perspectivas de investigación en estructura y dinámica de comunidades intermareales rocosas de Chile Central. II. Depredadores de alto nivel trófico. Medio Ambiente 5: 190–215Google Scholar
  10. Chapman, A. R. O.,1986. Population and community ecology of seaweeds. In J. H. S. Blaxter & A. J. Southward (eds), Advances in Marine Biology, Academic Press, Lond. 26: 1–161Google Scholar
  11. Chapman, A. R. O. & C. L. Goudey, 1983. Demographic study of the macrothallus of Leathesia diormis (Phaeophyta) in Nova Scotia. Can. J. Bot. 61: 319–323Google Scholar
  12. Connell, J. H., 1972. Community interactions on marine rocky intertidal shores. Ann. Rev. Ecol. Syst. 4: 169–192Google Scholar
  13. Connell, J. H., 1975. Some mechanisms producing structure in natural communities: A model and evidence from field experiments. In M. L. Cody & J. M. Diamond (eds), Ecology and Evolution of Communities. Harvard University Press, Cambridge: 480–490Google Scholar
  14. Connell, J. H., 1983. On the prevalence and relative importance of interspecific competition: Evidence from field experiments. Am. Nat. 122: 661–696Google Scholar
  15. Dahl, E., 1953. Some aspects of the ecology and zonation of the fauna on sandy beaches. Oikos4: 1–27Google Scholar
  16. Dayton, P. K., 1971. Competition, disturbance and community organization. The provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 41: 351–389Google Scholar
  17. Dayton, P. K., 1975a. Experimental evaluation of ecological dominance in a rocky intertidal algal community. Ecol. Monogr. 45: 137–159Google Scholar
  18. Dayton, P. K., 1975b. Experimental studies of algal canopy interactions in a sea-otter-dominated kelp community at Amchitka Island, Alaska. Fish. Bull. U.S.A. 73: 230–237Google Scholar
  19. Dayton, P. K., 1984. Processes structuring some marine communities: Are they general? In D. R. Strong, D. Simberloff, L. G. Abele & A. Thistle (eds), Ecological Communities: Conceptual Issues and the Evidence. Princeton University Press, Princeton: 181–197Google Scholar
  20. Dayton, P. K., V. Curril, T. Gerrodette, B. D. Keller, R. Rosenthal & D. V. Tresce, 1984. Patch dynamics and stability of some California kelp communities. Ecol. Monogr. 54:253–289Google Scholar
  21. DeWreede, R. E. & T. Klinger, 1987. Reproductive strategies in algae. In J. Lovett-Doust & L. Lovett-Doust (eds), Plant Reproductive Strategies. Oxford University Press, London (in press)Google Scholar
  22. Foster, M., 1982. Factors controlling the intertidal zonation of Iridaea flaccida (Rhodophyta). J. Phycol. 18: 285–294Google Scholar
  23. Guiler, E. R., 1959a. Intertidal belt forming species on the rocky coast of northern Chile. Papers and Proceedings, Royal Society of Tasmania93: 33–58Google Scholar
  24. Guiler, E. R., 1959b. The intertidal ecology of the Montemar area, Chile. Papers and Proceedings, Royal Society of Tasmania 93: 165–183Google Scholar
  25. Hannach, G. & B. Santelices, 1985. Ecological differences between the isomorphic reproductive phases of two species of Iridaea (Rhodophyta: Gigartinales). Mar. Ecol. Prog. Ser. 22: 291–303Google Scholar
  26. Hay, M. E., 1981. The functional morphology of turf-forming seaweeds: persistence in stressful marine habitats. Ecology 62: 739–750Google Scholar
  27. Hruby, T., 1976. Observations of algal zonation resulting from competition. Estuar. coast. mar. sci. 4: 231–233Google Scholar
  28. Innes, D. J., 1988. Genetic differentiation in the intertidal zone in populations of the alga Enteromorpha linza (Ulvales: Chlorophyta). Mar. Biol. 97: 9–16Google Scholar
  29. Jara, H. F. & C. A. Moreno, 1984. Herbivory and structure in a mid-littoral rocky community: a case in southern Chile. Ecology 65: 28–38Google Scholar
  30. Jernakoff, P., 1983. Factors affecting the recruitment of algae in a mid shore region dominated by barnacles. J. exp. mar. Biol. Ecol. 67: 17–31Google Scholar
  31. Jernakoff, P., 1985. An experimental evaluation of the influence of barnacles, crevices and seasonal patterns of grazing on algal diversity and cover in an intertidal barnacle zone. J. exp. mar. Biol. Ecol. 88: 287–302Google Scholar
  32. Kastendiek, J., 1982. Competitor-mediated coexistance: interactions among three species of benthic macroalgae. J. exp. mar. Biol. Ecol. 62: 201–210Google Scholar
  33. Littler, M. M. & D. S. Littler, 1980. The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory test of a functional form model. Am. Nat. 116: 25–44Google Scholar
  34. Lubchenco, J., 1980. Algal zonation in a New England rocky intertidal community: An experimental analysis. Ecology 61: 333–344Google Scholar
  35. Lubchenco, J. & J. Cubit, 1980. Heteromorphic life histories of certain marine algae as adaptations to variations in herbivory. Ecology 61: 676–687Google Scholar
  36. Lubchenco, J. & B. A. Menge, 1978. Community development and persistence in a low rocky intertidal zone. Ecol. Monogr. 48: 67–94Google Scholar
  37. Markham, J. W., 1978. Observations on the ecology of Laminaria sinclairii (Harvey) Farlow, Anderson et Eaton. Syesis1: 125–131Google Scholar
  38. Montalva, S. & B. Santelices, 1981. Interspecific interference among species of Gelidium from Central Chile. J. exp. mar. Biol. Ecol. 53: 77–88Google Scholar
  39. Moreno, C. A. & E. Jaramillo, 1983. The role of grazers in the zonation of intertidal macroalgae of the Chilean coast near Valdivia. Oikos 41: 73–76Google Scholar
  40. Moreno, C. A., J. P. Sutherland & H. F. Jara, 1984. Man as a predator in the intertidal zone of southern Chile. Oikos 42: 155–160Google Scholar
  41. Neushul, M. 1972. Functional interpretation of benthic marine algal morphology. In I. Abbott & M. Kurogi (eds), Contributions to the Systematics of Benthic Marine Algae of the North Pacific. Japanese Society of Phycology, Kobe: 47–73Google Scholar
  42. Oliva, D. & J. C. Castilla, 1986. The effect of human exclusion on the population structure of key-hole limpets Fissurella crassa and F. limbata on the coast of Central Chile. P.S.Z.N.I.: Marine Ecology 7: 201–207Google Scholar
  43. Ojeda, F. P. & B. Santelices, 1984. Ecological dominance of Lessonia nigrescens (Phaeophyta) in Central Chile. Mar. Ecol. Prog. Ser. 19: 83–91Google Scholar
  44. Paine, R. T., 1979. Disaster, catastrophe and local persistance of the sea palm Postelsia palmaeformis. Science 205:685–687Google Scholar
  45. Paine, R. T., 1984. Ecological determinism in the competition for space. Ecology 65: 1339–1348Google Scholar
  46. Paine, R. T. & R. L. Vadas, 1969. The effects of grazing by sea urchins, Strongylocentrotus spp., on benthic algal populations. Limnol. Oceanogr. 14: 710–719Google Scholar
  47. Paine, R. T., C. J. Slocum & D. O. Duggins, 1979. Growth and longevity in the crustose red alga Petrocelis middendorfi. Mar. Biol. 51: 185–192Google Scholar
  48. Quinn, J. F., 1982. Competitive hierarchies in marine benthic communities. Oecologia 54: 129–135Google Scholar
  49. Ruiz, E. & L. Giampoli, 1981. Estudios distribucionales de la flora y fauna costera de Caleta Cocholgue, Bahía de Concepción, Chile. Boletín de la Sociedad de Biología de Concepción 52: 145–166Google Scholar
  50. Romo, H. & K. Alveal, 1977. Las comunidades del litoral rocoso de Punta Ventanilla, Bahía de Quintero, Chile. Gayana (Misc.) 6: 1–41Google Scholar
  51. Rosenthal, R. J., W. D. Clarke & P. K. Dayton, 1974. Ecology and natural history of a stand of giant kelp Macrocystis pyrifera off Del Mar, California. Fish. Bull. U.S.A. 72: 670–684Google Scholar
  52. Santelices, B., 1981. Perspectivas de investigación en estructura y dinámica de comunidades intermareales rocosas de Chile Central. I. Cinturones de macroalgas. Medio Ambiente 5: 175–189Google Scholar
  53. Santelices, B., 1989. Coastal ecosystems of mainland Chile. In P. Nienhuis & A. Mathieson (eds), Intertidal and Littoral Ecosystems of the World. Elsevier Scientific Publishing Co. 24 (in press).Google Scholar
  54. Santelices, B. & M. Avila, 1986. Bases biológicas para maximizar cosecha de ‘Luche’ (Porphyra columbina Montagne) en Chile Central. En R. Westermeier (ed.), Actas del Segundo Congreso Nacional sobre Algas Marinas Chilenas. Universidad Austral de Chile, Valdivia, Chile: 201–211Google Scholar
  55. Santelices, B. & F. P. Ojeda, 1984. Recruitment, growth and survival of Lessonia nigrescens (Phaeophyta) at various tidal levels in exposed habitats of Central Chile. Mar. Ecol. Prog. Ser. 19: 73–82Google Scholar
  56. Santelices, B. & E. Martinez, 1988. Effects of filter-feeders and grazers on algal settlement and growth in mussel beds. J. exp. mar. Biol. Ecol. 118: 281–306Google Scholar
  57. Santelices, B. & R. Norambuena, 1987. A harvesting strategy for Iridaea laminarioides in Central Chile. Hydrobiologia 151/152:329–333Google Scholar
  58. Santelices, B., J. Cancino, S. Montalva, R. Pinto & E. González, 1977. Estudios ecológicos en la zona costera afectada por contaminación del ‘Northern Breeze’. II. Comunidades de playas de rocas. Medio Ambiente 2: 65–83Google Scholar
  59. Santelices, B., J. C. Castilla, J. Cancino & P. Schmiede, 1980. Comparative ecology of Lessonia nigrescens and Durvillaea antarctica (Phaeophyta) in Central Chile. Mar. Biol. 59: 119–132Google Scholar
  60. Santelices, B., S. Montalva & P. Oliger, 1981. Competitive algal community organization in exposed intertidal habitats for Central Chile. Mar. Ecol. Prog. Ser. 6: 267–276Google Scholar
  61. Slocum, C. J., 1980. Differential susceptibility to grazers in two phases of an intertidal alga: Advantages of heteromorphic generations. J. exp. mar. Biol. Ecol. 46: 99–110Google Scholar
  62. Smith, B. D., 1986. Implications of population dynamics and interspecific competition for harvest management of the seaweed Laminaria. Mar. Ecol. Prog. Ser. 33: 7–18Google Scholar
  63. Sousa, W. P., 1979a. Experimental investigations of disturbance and ecological succession in a rocky intertidal algal community. Ecol. Monogr. 49: 227–254Google Scholar
  64. Sousa, W. P., 1979b. Disturbance in marine intertidal boulder fields: The non equilibrium maintenance of species diversity. Ecology 60: 1225–1239Google Scholar
  65. Sutherland, J., 1974. Multiple stable points in natural communities. Am. Nat. 108: 859–873Google Scholar
  66. Taylor, P. R. & M. E. Hay, 1984. Functional morphology of intertidal seaweds: adaptive significance of aggregate vs. solitary forms. Mar. Ecol. Prog. Ser. 18: 295–302Google Scholar
  67. Underwood, A. J., 1980. The effects of grazing by gastropods and physical factors on the upper limits of distribution of intertidal macroalgae. Oecologia (Berlin) 46: 201–213Google Scholar
  68. Underwood, A. J., 1986. The analysis of competition by field experiments. In J. Kikkawa & D. J. Anderson (eds), Community Ecology: Patterns and Process. Blackwell Scientific Press: 240–268.Google Scholar
  69. Underwood, A. J. & E. J. Denley, 1984. Paradigms, explanations and generalizations in models for the structure of intertidal communities on rocky shores. In D. R. Strong, D. Simberloff, L. G. Abele & A. Thistle (eds), Ecological communities: Conceptual issues and the evidence. Princeton University Press, Princeton: 151–180Google Scholar
  70. Underwood, A. J. & P. Jernakoff, 1981. Effects of interactions between algae and grazing gastropods on the structure of a low-shore intertidal algal community. Oecologia 48: 221–233Google Scholar
  71. Underwood, A. J. & P. Jernakoff, 1984. The effects of tidal height, wave-exposure, seasonality and rocky-pools on grazing and distribution of intertidal macroalgae in New South Wales. J. exp. mar. Biol. Ecol. 75: 71–96Google Scholar
  72. Vadas, R., 1979. Seaweeds: an overview, ecological and economic importance. Experientia 35: 429–432Google Scholar
  73. Velimirov, B. & C. L. Griffiths, 1979. Wave-induced kelp movement and its importance for community structure. Bot. mar. 22: 169–172Google Scholar
  74. Westermeier, R., P. J. Rivera, M. Chacana & I. Gómez, 1987. Biological bases for management of Iridaea laminarioides Bory in southern Chile. Hydrobiologia 151/152: 313–328Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • B. Santelices
    • 1
  1. 1.Departamento de EcologiaP. Universidad Catolica de ChileSantiagoChile

Personalised recommendations