, Volume 178, Issue 1, pp 1–10 | Cite as

In situ nutrient enrichment experiments with periphyton in agricultural streams

  • Steven J. Bushong
  • Roger W. Bachmann


Four agricultural streams were examined to determine if nitrogen or phosphorus was limiting the growth of the attached algal communities. Experiments were conducted in situ using nutrient-diffusing artificial substrata. Experiments conducted over a 2-year period demonstrated that the benthic algal communities in these streams were seldom limited by nitrogen or phosphorus. Nitrogen was, however, found limiting on two occasions when ambient nitrogen levels were reduced. These experiments were characterized by extended low flows and warm water temperatures. Large algal mats which proliferate during these periods may be responsible for reducing the available nitrogen to a limiting level. Major storm events are thought to interrupt the development of nitrogen limiting conditions by scouring the algae and increasing the nitrogen loading from the watershed. Water temperature was demonstrated as an important factor in controlling periphyton growth rates and may have influenced algal response to nutrient input. Ammonium additions often enhanced algal growth in the absence of nitrate stimulation.

Key words

nutrient limitation algae periphyton nitrogen stream agriculture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Public Health Association, 1981. Standard Methods for the Examination of Water and Wastewater. 15th ed. A.P.H.A., New York. 1134 pp.Google Scholar
  2. Burkholder-Crecco, J. M. & R. W. Bachmann, 1979. Potential phytoplankton productivity of three Iowa streams. Proc Iowa Acad. Sci. 86: 22–25.Google Scholar
  3. Bushong, S. J., 1985. In situ experiments to determine limiting nutrients in Iowa streams. M.S. Thesis. Iowa State University, Ames, Iowa. 80 pp.Google Scholar
  4. Eppley, R. W., J. L. Coatsworth & L. Solorzano, 1969. Studies of nitrate reductase in marine phytoplankton. Limnol. Oceanogr. 14: 194–205.Google Scholar
  5. Fairchild, G. W. & R. L. Lowe, 1984. Artificial substrates which release nutrients: effects on periphyton and invertebrate succession. Hydrobiologia 114: 29–37.Google Scholar
  6. FairchildG. W., R. L. Lowe & W. B. Richardson, 1985. Algal periphyton growth on nutrient-diffusing substrates: an in situ bioassay. Ecology 66: 465–472.Google Scholar
  7. Fisher, S. G., L. J. Gray, N. B. Grimm & D. E.. Busch, 1982. Temporal succession in a desert stream ecosystem following flash flooding. Ecol. Monogr. 52: 93–110.Google Scholar
  8. Hill, A. R., 1978. Factors affecting the export of nitrate-nitrogen from drainage basins in southern Ontario. Wat. Res. 12: 1045–1057.Google Scholar
  9. Hoagland, K. D., S. C. Roemer & J. R. Rosowski, 1982. Colonization and community structure of two periphyton assemblages with emphasis on the diatoms (Bacillariophyceae). Am. J. Bot. 69: 188–213.Google Scholar
  10. Iowa Dept. Water Air and Waste Management, 1984. Water Quality in Iowa. Des Moines, Iowa. 108 pp.Google Scholar
  11. Kilkus, S. P., J. D. LaPerriere & R. W. Bachmann, 1975. Nutrients and algae in some central Iowa streams. J. Water Pollut. Control Fed. 47: 1870–1879.Google Scholar
  12. Klepper, R., 1978. Nitrogen fertilizer and nitrate concentrations in tributaries of the Upper Sangamon River in Illinois. J. Environ. Qual. 7: 13–22.Google Scholar
  13. Kortge, K. J., 1984. Dissolved oxygen and primary productivity in a small agricultural stream in Iowa. M.S. Thesis. Iowa State University, Ames, Iowa. 76 pp.Google Scholar
  14. Liao, C. F. H. & D. R. S. Lean, 1978. Nitrogen transformations within the trophogenic zone of lakes. J. Fish Res. Bd Can. 35: 1102–1108.Google Scholar
  15. McCarthy, J. J., 1980. Nitrogen. In I. Morris (ed.), The Physiological Ecology of Phytoplankton. University of California Press, Berkeley, 625 pp.Google Scholar
  16. McCarthy, J. J., W. R. Taylor & J. L. Taft, 1977. Nitrogenous nutrition of the phytoplankton in the Chesapeake Bay. 1. Nutrition availability and phytoplankton preferences. Limnol. Oceanogr. 22: 996–1011.Google Scholar
  17. McCarthy, J. J., D. Wynne & T. Berman, 1982. The uptake of dissolved nitrogenous nutrients by Lake Kinneret (Israel) microplankton. Limnol. Oceanogr. 27: 673–680.Google Scholar
  18. McDonald, D. B. & R. C. Splinter, 1982. Long-term trends in nitrate concentrations in Iowa water supplies. J. Am Water Works Assoc. 74: 437–440.Google Scholar
  19. Menzel, D. W. and N. Corwin, 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10: 280–282.Google Scholar
  20. Morris, I., 1974. Nitrogen assimilation and protein syntjesis. In W. D. P. Steward (ed.), Algal Physiology and Biochemistry. University of California Press, Berkeley, 989 pp.Google Scholar
  21. Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analyt. Chim. Acta 27: 31–36.Google Scholar
  22. Neilsen, G. H., J. L. B. Culley & D. R. Cameron, 1982. Agriculture and water quality in the Canadian Great Lakes Basin: IV. Nitrogen. J. Environ. Qual. 11. 493–496.Google Scholar
  23. Omernik, J. M., 1977. Nonpoint source-stream nutrient level relationships: A nationwide study. EPA-600/3-77-105. Environmental protection Agency, Corvallis, Oregon, 151 pp.Google Scholar
  24. Shoaf, W. T. & B. W. Lium, 1976. Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide. Limnol Oceanogr. 21: 926–928.Google Scholar
  25. Strickland, J. D. H. & T. R. Parsons, 1968. A Practical Handbook of Seawater Analysis. Bull. Fish Res. Bd Can., 311 pp.Google Scholar
  26. Swanson, C. D. & R. W. Bachmann, 1976. A model of algal exports in some Iowa streams. Ecology 57: 1076–1080.Google Scholar
  27. Syrett, P. J., 1962. Nitrogen Assimilation. In R. A. Lewin (ed.), Physiology and Biochemistry of Algae. Academic Press, New York, 929 pp.Google Scholar
  28. Triska, F. J., V. C. Kennedy, R. J. Avanzino & B. N. Reilly, 1983. Effect of simulated canopy cover on regulation of nitrate uptake and primary production by natural periphyton assemblages. In T. Fontaine & S. Bartell (eds.), Dynamics of Lotic Ecosystems. Ann Arbor Sciences Pub., Ann Arbor.Google Scholar
  29. Vollenweider, R. A., 1971. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Organization for Economic Co-operation and Development, Paris, 160 pp.Google Scholar
  30. Ward, A. K. & R. G. Wetzel, 1980a. Interactions of light and nitrogen source among planktonic blue-green algae. Arch. Hydrobiol. 90: 1–25.Google Scholar
  31. Ward, A. K. & R. G. Wetzel, 1980b. Photosynthesis responses of blue-green algal population to variable light intensities. Arch Hydrobiol. 90: 129–138.Google Scholar
  32. Wetzel, R. G. & G. E. Likens, 1979. Limnological Analyses. W. B. Saunders Co., Philadelphia, 357 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Steven J. Bushong
    • 1
  • Roger W. Bachmann
    • 1
  1. 1.Department of Animal EcologyIowa State UniversityAmes

Personalised recommendations