, Volume 222, Issue 2, pp 115–119 | Cite as

Microhabitat selection of ostracods in relation to predation and food

  • G. Mbahinzireki
  • F. Uiblein
  • H. Winkler


Experiments with the cyprinid fishVimba vimba as predator and the ostracodsCypridopsis vidua, Darwinula stevensoni andCytherissa lacustris as prey show that conspicuous coloration enhances predation risk for the ostracods. When the ostracods are allowed to retreat into sediment, risk is markedly reduced. ostracods show clear microhabitat preferences which are influenced by habitat structure and food supply. Exposed plant surfaces are visited only if they bear food and if the ostracods are not satiated.

Key words

Ostracoda predation risk habitat selection Cyprinids prey selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cook, W. L. & F. A. Streams, 1984. Fish predation onNotonecta (Hemiptera): relationship between prey risk and habitat utilization. Oecologia 64: 177–183.Google Scholar
  2. Coull, B. C. & J. B. J. Wells, 1983. Refuges from fish predation experiments with phytal meiofauna from the New Zealand rocky intertidal. Ecology 64: 1599–1609.Google Scholar
  3. Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1818.Google Scholar
  4. De Witt, T. H., 1987. Microhabitat selection and colonisation rates of benthic amphipods. Mar. Ecol. Prog. Ser. 36: 237–250.Google Scholar
  5. Diehl, S., 1988. Foraging efficiency of three fresh water fishes: effects of structural complexity and light. Oikos 53: 207–214.Google Scholar
  6. Gotceitas, V. & P. Colgan, 1989. Predator foraging success and habitat complexity: quantitative test of the threshold hypothesis. Oecologia 80: 158–166.Google Scholar
  7. Harding, J. P., 1962.Mungava munda and four other new species of ostracode crustaceans from fish stomachs. The Natural History of Rennell Island, British Salomon Islands 4: 51–62.Google Scholar
  8. Hartmann, G., 1975. Ostracoda. In H. G. Bronns (ed.), Klassen und Ordnungen des Tierreichs, G. Fischer, Jena. 5,1,4,4: 569–786.Google Scholar
  9. Herzig, A. & H. Winkler, 1986. The influence of temperature on the embryonic development of three cyprinid fishes,Abramis brama, Chalcalburnus chalcoides mento andVimba vimba. J. Fish. Biol. 28: 171–181.Google Scholar
  10. Ibrahim, A. A. & F. A. Huntingford, 1989. The role of visual cues in prey selection in three-spined sticklebacks (Gasterosteus aculeatus). Ethology 81: 265–272.Google Scholar
  11. Jeffries, M. J. & J. H. Lawton, 1984. Enemy free space and the structure of ecological communities. Biol. J. Linn. Soc. 23: 269–286.Google Scholar
  12. Liperovskaya, E. S., 1948. O pitanii pres novodnikh ostrakod. Zool. Zh. 27: 125–136.Google Scholar
  13. McDowall, R. M., 1965. Studies on the biology of the redfinned bully,Gibimorphus huttoni. Part III — Food studies. Trans. Soc. N. Z. Zool. 5, 17: 233–254.Google Scholar
  14. McKenzie, K. G. & D. A. Pollard, 1968. Ostracods in the diets of fish from Lake Modewarre, near Gaelong, Victoria. Aust. Soc. Limnol. Newsl. 6, 1: 14–17.Google Scholar
  15. Mittelbach, G. G., 1984. Predation and resource partitioning in two sunfishes (Centrarchidae). Ecology 65: 499–513.Google Scholar
  16. O'Brien, W. J., N. A. Slade & G. L. Vinyard, 1976. Apparent size as the determinant of prey selection by bluegill sunfish (Lepomis macrochirus). Ecology 57: 1304–1310.Google Scholar
  17. Reyment, R. A., 1966. Preliminary observations on gastropod predation in the Western Niger Delta. Palaeogeogr., Palaeoclimatol., Palaeoecol. 2: 81–102.Google Scholar
  18. Rosenzweig, M., 1981. A theory of habitat selection. Ecology 62: 327–335.Google Scholar
  19. Scott, A., 1987. Prey selection by juvenile cyprinids from running water. Freshwat. Biol. 17: 129–142.Google Scholar
  20. Sih, A., 1986. Antipredator responses and the perception of danger by mosquito larvae. Ecology 67: 434–441.Google Scholar
  21. Uiblein, F. & H. Winkler, 1988. Der Nahrungserwerb der Mondsee-Zährte. Sitzber. Österr. Akad. Wiss., math.-naturw. Klasse, 196: 311–322.Google Scholar
  22. Werner, E. E. & D. J. Hall, 1988. Ontogenetic habitat shifts in bluegill: the foraging rate — predation risk trade-off. Ecology 69: 1352–1366.Google Scholar
  23. Whatley, R. C., 1983. An ostracod to catch a trout. Brit. Micropalaeontol. 20: 2.Google Scholar
  24. Zaret, T. M., 1981. Predation and freshwater communities. Yale University Press, New Haven, Conn., 186 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • G. Mbahinzireki
    • 1
    • 2
  • F. Uiblein
    • 1
    • 2
  • H. Winkler
    • 1
    • 2
  1. 1.Institut für Limnologie der ÖsterreichischenAkademie der WissenschaftenMondseeAustria
  2. 2.Institut für Vergleichende Verhaltensforschung der ÖsterreichischenAkademie der WissenschaftenWienAustria

Personalised recommendations