Hydrobiologia

, Volume 263, Issue 1, pp 1–44 | Cite as

A proposed framework for developing indicators of ecosystem health

  • John CairnsJr.
  • Paul V. McCormick
  • B. R. Niederlehner
Article

Abstract

Considerations involved in developing a suite of indicators to monitor regional environmental health, similar in conception to management use of ‘leading economic indicators’, are described. Linkages between human activities and well being and the state of the environment are considered essential to the evaluation of general environmental health. Biogeochemical and socioeconomic indicators are mutually affected by environmental degradation and examples of both categories of indicators are described. Desirable properties in indicators of environmental health vary with their specific management use. Different indicators are called for when collecting data to assess the adequacy of the environment, monitor trends over time, provide early warning of environmental degradation, or diagnose the cause of an existing problem. Tradeoffs between desirable characteristics, costs, and quality of information are inevitable when choosing indicators for management use. Decisions about what information to collect for which purpose can be made more rationally when available indicators are characterized and matched to management goals.

Key words

biological indicator environmental health linkages socioeconomic indicator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, T. F. H., 1990. Integrity and surprise in the Great Lakes basin ecosystem: The perspective hierarchy theory. In C. J. Edwards & H. A. Regier (eds), An Ecosystem Approach to the Integrity of the Great Lakes in Turbulent Times. Great Lakes Fishery Commission Special Publication 90-4, Ann Arbor, MI: 121–130.Google Scholar
  2. Auer, M. T., R. P. Canale, H. C. Grundler & Y. Matsuoka, 1982. Ecological studies and mathematical modeling of Cladophora in Lake Huron: 1. Program description and field monitoring of growth dynamics. J. Great Lakes Res. 8: 73–83.Google Scholar
  3. Aulerich, R. J. & R. K. Ringer, 1977. Current status of PCB toxicity to mink, and effect on their reproduction. Arch. envir. Contain. Toxicol. 6: 279–292.Google Scholar
  4. Barton, D. R., 1989. Some problems affecting the assessment of Great Lakes water quality using benthic invertebrates. J. Great Lakes Res. 15: 611–622.Google Scholar
  5. Beck, W. M., Jr., 1955. Suggested method for reporting biotic data. Sewage Ind. wastes 27: 1193–1197.Google Scholar
  6. Bertram, P. E. & T. B. Reynoldson, 1991. Developing ecosystem objectives for the Great Lakes: Policy, progress and public participation. Hydrobiologia.Google Scholar
  7. Biggs, D., R. Rowland, H. O'Connors, C. Powers & C. Wurster, 1978. A comparison f of the effects of chlordane and PCB on the growth, photosynthesis and cell size of estuarine phytoplankton. Envir. Pollut. 15: 253–263.Google Scholar
  8. Bird, P. & D. Rapport, 1986. State of the Environment Report for Canada. Minister of the Environment, Ottawa.Google Scholar
  9. Bormann, F. H., 1983. Factors confounding the evaluation of air pollutant stress on forests: Pollutant input and ecosystem complexity. In Symposium, Acid Deposition, a Challenge for Europe. Karlsruhe, Federal Republic of Germany: 19–23.Google Scholar
  10. Cairns, J., Jr., 1983. Are single species tests alone adequate for estimating environmental hazard? Hydrobiologia 100: 47–57.Google Scholar
  11. Cairns, J., Jr. (ed.), 1985. Multispecies toxicity testing. Pergamon Press, New York, 261 pp.Google Scholar
  12. Cairns, J., Jr (ed.), 1986a. Community toxicity testing. American Society for Testing and Materials, Philadelphia, PA, 350 pp.Google Scholar
  13. Cairns, J., Jr., 1986b. The case for direct measurement of environmental responses to hazardous materials. Wat. Resour. Bull. 22: 841–842.Google Scholar
  14. Cairns, J., Jr. (ed.), 1988. Rehabilitating damaged ecosystems, Vol. 1. CRC Press, Boca Raton, FL, 192 pp.Google Scholar
  15. Cairns, J., Jr. & D. Gruber, 1980. A comparison of methods and instrumentation of biological early warning systems. Wat. Resour. Bull. 16: 261–266.Google Scholar
  16. Cairns, J., Jr. & D. I. Mount, 1990. Aquatic toxicology. Envir. Sci. Technol. 24: 154–161.Google Scholar
  17. Cairns, J., Jr. & B. R. Niederlehner, 1987. Problems associated with selecting the most sensitive species for toxicity testing. Hydrobiologia 153: 87–94.Google Scholar
  18. Cairns, J., Jr. & J. R. Pratt, 1986. On the relation between structural and functional analyses of ecosystems. Envir. Toxicol. Chem. 5: 785–786.Google Scholar
  19. Cairns, J., Jr., G. R. Lanza & B. C. Parker, 1972. Pollution related structural and functional changes in aquatic communities with emphasis on freshwater algae and protozoa. Proc. Acad. nat. Sci. Philad. 124: 79–127.Google Scholar
  20. Cairns, J., Jr., K. L. Dickson & A. Maki (eds), 1978. Estimating the hazard of chemical substances to aquatic life. American Society for Testing and Materials, Philadelphia, PA.Google Scholar
  21. Cairns, J., Jr., J. R. Pratt, B. R. Niederlehner & N. J. Bowers, 1988. Structural and functional responses to perturbation in aquatic ecosystems. Report to the Air Force Office of Scientific Research, AS-A192 071/9/GAR. National Technical Information Service, Springfield, VA.Google Scholar
  22. Carpenter, S. S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake ecosystem productivity. BioScience 35: 634–639.Google Scholar
  23. Cohen, J. E., 1989. Food webs and community structure. In J. Roughgarden, R. M. May & S. A. Levin (eds), Perspectives in Ecological Theory. Princeton University Press, Princeton, NJ: 181–202.Google Scholar
  24. Colborn, T., 1990. Innovative approaches for evaluating human health in the Great Lakes Basin using wildlife toxicology and ecology. International Joint Commission, Windsor, Ontario.Google Scholar
  25. Connell, J. H., 1978. Diversity in tropical rainforests and coral reefs. Science 199: 1302–1310.Google Scholar
  26. Côté, R. P. & P. G. Wells, 1991. Controlling chemical hazards: Fundamentals of the management of toxic chemicals. Unwin Hyman, London, UK, 310 pp.Google Scholar
  27. Craik, K. & E. Zube, 1976. Perceiving environmental quality research and applications. Plenum Press, New York, 310 pp.Google Scholar
  28. Davis, W. & A. Lubin, 1989. Statistical validation of Ohio EPA's invertebrate community index. In Proceedings of the Midwest Pollution Control Biologists Meeting, W. S. Davis & T. P. Simon (eds), EPA 905/9-89-007. USEPA Region V Instream Biocriteria and Ecological Assessment Committee, Chicago, IL: 23–32.Google Scholar
  29. Delfino, J. J., 1979. Toxic substances in the Great Lakes. Envir. Sci. Tech. 13: 1462–1468.Google Scholar
  30. Descy, J. P., 1979. A new approach to water quality estimation using diatoms. Nova Hedwigia 64: 305–323.Google Scholar
  31. DiGiulio, R. T., 1989. Biomarkers. In Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference, EPA/600/3-89/013. United States Environmental Protection Agency, Cincinnati, OH: 7-1 to 7-34.Google Scholar
  32. Dutka, B.J., N. Nyholm & J. Peterse, 1983. Comparison of several microbiological toxicity screening tests. Wat. Res. 17: 1363–1368.Google Scholar
  33. Ecosystem Objectives Working Group, 1990. Ecosystem objectives for Lake Ontario. Prepared by the Parties to the Great Lakes Water Quality Agreement, March, 1990, 14 pp.Google Scholar
  34. Edwards, C. J. & H. A. Regier (eds), 1990. An ecosystem approach to the integrity of the Great Lakes in turbulent times. Great Lakes Fishery Commission Special Publication 90–4, Ann Arbor, MI, 299 pp.Google Scholar
  35. Edwards, C. J. & R. A. Ryder, 1990. Biological surrogates of mesotrophic ecosystem health in the Laurentian Great Lakes. Report to the Great Lakes Science Advisory Board, Windsor, Ontario, 69 pp.Google Scholar
  36. Evans, M. S. & D. C. McNaught, 1988. The effects of toxic substances on zooplankton populations: A Great Lakes perspective. In M. S. Evans (ed.), Toxic Contaminants and Ecosystem Health: A Great Lakes Focus. John Wiley & Sons, New York: 53–76.Google Scholar
  37. Eyles, J., 1990. Objectifying the subjective: The measurement of environmental quality. Soc. Indicators Res. 22: 139–153.Google Scholar
  38. Fein, G., J. Jacobson, S. Jacobson, P. Schwartz & J. Dowler, 1984. Prenatal exposure to polychorinated biphenyls: Effects on birth size and gestational age. J. Pediatr. 105: 315–320.Google Scholar
  39. Fisher, N. S., 1975. Chlorinated hydrocarbon pollutants and photosynthesis of marine phytoplankton: A reassessment. Science 189: 463–464.Google Scholar
  40. Fitchko, J., 1986. Literature review of the effects of persistent toxic substances on Great Lakes biota. International Joint Commission, Windsor, Ontario.Google Scholar
  41. Flint, R., 1991. Human health risks from chemical exposure: The Great Lakes ecosystem. Lewis Publishers, Boca Raton, FL.Google Scholar
  42. Fontaine, T. D. & D. J. Stewart, 1990. In C. J. Ewards & H. A. Regier (eds), An Ecosystem Approach to the Integrity of the Great Lakes in Turbulent Times. Great Lakes Fishery Commission Special Publication 90–4, Ann Arbor, MI: 153–168.Google Scholar
  43. Friend, A. & D. Rapport, 1990. The evolution of information systems for sustainable development, IREE Occasional Paper Series, No. 1. Institute for Research on Environment and Economy, University of Ottawa, Ontario.Google Scholar
  44. Gallup, G., Jr., 1990. The Gallup poll 1989. Scholarly Resources Inc, Wilmington, DE.Google Scholar
  45. Gannon, J. E. & R. S. Stemberger, 1978. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans. am. microsc. Soc. 97: 16–35.Google Scholar
  46. Giesy, J. P. (ed.), 1980. Microcosms in ecological research. Technical Information Center, Springfield, VA, 1110 pp.Google Scholar
  47. Giesy, J. P., D. Versteeg & R. Graney, 1988. A review of selected clinical indicators of stress-induced changes in aquatic organisms. In M. S. Evans (ed.), Toxic Contaminants and Ecosystem Health: A Great Lakes Focus, John Wiley & Sons, New York: 169–200.Google Scholar
  48. Gilbertson, M., 1984. Need for development epidemiology for chemically induced diseases in fish in Canada. Can. J. Fish. aquat. Sci. 41: 1534–1540.Google Scholar
  49. Gilbertson, M., 1988. Epidemics in birds and mammals caused by chemicals in the Great Lakes. In M. S. Evans (ed.), Toxic Contaminants and Ecosystem Health: A Great Lakes Focus. John Wiley & Sons, New York: 133–152.Google Scholar
  50. Gilman, A. P., D. B. Peakall, D. J. Hallett, G. A. Fox & R. J. Norstrom, 1979. Herring gulls (Larus argentatus) as monitors of contamination in the Great Lakes. In Animals as Monitors of Environmental Pollutants. National Academy of Science Press, Washington, DC: 280–289.Google Scholar
  51. Great Lakes Research Advisory Board, 1978. The ecosystem approach, Special Report to the International Joint Commission, Windsor, Ontario, 49 pp.Google Scholar
  52. Great Lakes Water Quality Board, 1989. Report to the International Joint Commission on Great Lakes water quality. Windsor, Ontario, 128 pp.Google Scholar
  53. Hallett, D., 1986. Ecosystem surprises: Toxic chemical exposure and effects in the Great Lakes. In N. W. Schmidtke (ed.), Toxic Contamination in Large Lakes, Volume I: Chronic Effects of Toxic Contaminants in Large Lakes. Lewis Publishers, Inc., Chelsea, MI: 25–37.Google Scholar
  54. Hammons, A. (ed.), 1981. Methods for ecological toxicology. Ann Arbor Science, Ann Arbor, MI.Google Scholar
  55. Harris, H. J., 1988. Persistent toxic substances and birds and mammals in the Great Lakes. In M. S. Evans (ed.), Toxic Contaminants and Ecosystem Health: A Great Lakes Focus. John Wiley & Sons, New York: 557–569.Google Scholar
  56. Harris, L., 1990. Public mood has hardened to advocate tougher, stricter laws on air pollution. The Harris Poll 199 # 13, April.Google Scholar
  57. Hellawell, J. M., 1978. Biological surveillance of rivers. Water Research Centre, Stevenage, England.Google Scholar
  58. Hellawell, J. M., 1986. Biological indicators of freshwater pollution and environmental management. Elsevier Applied Science Publishers, New York, 546 pp.Google Scholar
  59. Hill, J. & R. G. Wiegert, 1980. Microcosms in ecological modelling. In J. P. Giesy (ed.), Microcosms in ecological research. National Technical Information Service, Springfield, VA: 138–163.Google Scholar
  60. Hilsenhoff, W. L., 1982. Using a biotic index to evaluate water quality in streams, Technical Bulletin No. 132. Wisconsin Department of Natural Resources, Madison, WI, 22 pp.Google Scholar
  61. Humphrey, H., 1988. Chemical contaminants in Great Lakes: The human health aspect. In M. S. Evans (ed.), Toxic Contaminants and Ecosystem Health: A Great Lakes Focus. John Wiley & Sons, New York: 153–165.Google Scholar
  62. Hunsaker, C. T. & D. E. Carpenter (eds), 1990. Environmental monitoring and assessment program: Ecological indicators. Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC.Google Scholar
  63. Hurlbert, S. H., 1971. The nonconcept of species diversity: A critique and alternative parameters. Ecology 52: 577–586.Google Scholar
  64. International Joint Commission, 1986. 1985 annual report: Committee on the assessment of human health effects of Great Lakes water quality. Windsor, Ontario.Google Scholar
  65. International Joint Commission, 1989. 1989 report on Great Lakes water quality. Windsor, Ontario, 12 pp.Google Scholar
  66. International Joint Commission, 1990. Proceedings of a workshop on the role of epidemiology in assessing the effects of Great Lakes water quality on human health, ISBN I-895085–05–5. Windsor, Ontario.Google Scholar
  67. Jacobson, J. L. & S. W. Jacobson, 1988. New methodologies for assessing the effects of prenatal toxic exposure on cognitive functioning in humans. In M. S. Evans (ed.), Toxic Contaminants and Ecosystem Health: A Great Lakes Focus. John Wiley & Sons, New York: 373–388.Google Scholar
  68. Jacobson, J., S. Jacobson, G. Fein, P. Schwartz & J. Dowler, 1984. Prenatal exposure to an environmental toxin: A test of the multiple effects model. Dev. Psychol. 20: 523–532.Google Scholar
  69. Jansen, H., 1991. The economic perspective. In R. Cote & P. Wells (eds), Controlling Chemical Hazards: Fundamentals of the Management of Toxic Chemicals. Unwin Hyman, Cambridge, MA.Google Scholar
  70. Jonasson, P. M., 1984. Oxygen demand and long term changes of profundal zoobenthos. Hydrobiologia 115: 121–126.Google Scholar
  71. Jordan, W. R., III, M. E. Gilpin & J. D. Aber (eds), 1987. Restoration Ecology: A Synthetic Approach to Ecological Research. Cambridge University Press, Cambridge, UK, 342 pp.Google Scholar
  72. Kaesler, R. L., J. Cairns & S. Crossman, 1974. Redundancy in data from stream surveys. Wat. Res. 8: 637–642.Google Scholar
  73. Karr, J. R., 1991. Biological integrity: A long-neglected aspect of water resource management. Ecol. Appl. 1: 66–84.Google Scholar
  74. Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant & I. J. Schlosser, 1986. Assessing biological integrity of running waters: A method and its rationale, Special Publication 5. Illinois Natural History Survey, Champaign, IL, 28 pp.Google Scholar
  75. Kaushik, N. K., G. L. Stephenson, K. R. Solomon & K. E. Day, 1985. Impact of permethrin on zooplankton communities in limnocorrals. Can. J. Fish aquat. Sci. 42: 77–85.Google Scholar
  76. Kerr, A., 1990. Canada's national environmental indicators project: Background report. Sustainable Development and State of the Environment Reporting Branch, Environment Canada, 12 pp.Google Scholar
  77. Kerr, S. R. & L. M. Dickie, 1984. Measuring the health of aquatic ecosystems. In V. W. Cairns, P. V. Hodson & J. O. Nriagu (eds), Contaminant Effects on Fisheries. John Wiley & Sons, New York: 279–284.Google Scholar
  78. Kimball, K. D. & S. A. Levin, 1985. Limitations to laboratory bioassays: The need for ecosystem-level testing. Bioscience 35: 165–171.Google Scholar
  79. Kingston, J. C., R. L. Lowe, E. F. Stoermer & T. B. Ladewski, 1983. Spatial and temporal distribution of benthic diatoms in northern Lake Michigan. Ecology 64: 1566–1580.Google Scholar
  80. Kitchell, J. F., M. S. Evans, D. Scavia & L. B. Crowder, 1988. Regulation of water quality in Lake Michigan: Report of the food web workshop. J. Great Lakes Res. 14: 109–114.Google Scholar
  81. Kolkwitz, R. & M. Marsson, 1908. Ökologie der pflanzlichen Saprobien. Ber. dt. bot. Ges. 26: 505–519.Google Scholar
  82. Kraft, K. J. & R. H. Sypniewski, 1981. Effect of sediment copper on the distribution of benthic macroinvertebrates in the Keweenaw Waterway. J. Great Lakes Res. 7: 258–263.Google Scholar
  83. Lange-Bertalot, H., 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64: 285–304.Google Scholar
  84. LaPoint, T. W. & J. A. Perry, 1989. Use of experimental ecosystems in regulatory decision making. Envir. Mngt. 13: 539–544.Google Scholar
  85. LaPoint, T. W., J. F. Fairchild, E. E. Little & S. E. Finger, 1989. Laboratory and field techniques in ecotoxicological research: Strengths and limitations. In A. Boudou & F. Ribeyre (eds), Aquatic Ecotoxicology: Fundamental Concepts and Methodologies, Vol. III. CRC Press, Boca Raton, FL.Google Scholar
  86. Lave, L., F. Enhever, A. Roesnkranz & G. Omenn, 1988. Information value of the rodent bioassay. Nature (London) 336: 631–633.Google Scholar
  87. Leonard, P. & D. Orth, 1986. Application and testing of an index of biotic integrity in small, coolwater streams. Trans. am. Fish. Soc. 115: 401–414.Google Scholar
  88. Levine, S. N., 1989. Theoretical and methodological reasons for variability in the responses of aquatic ecosystem processes to chemical stresses. In S. A. Levine, M. A. Harwell, J. R. Kelly & K. D. Kimball (eds), Ecotoxicology: Problems and Approaches, Springer-Verlag, New York: 145–180.Google Scholar
  89. Lichtkopper, F. & L. Hushak, 1989. Characteristics of Ohio's Lake Erie recreational marinas J. Great Lakes Res 15: 418–426.Google Scholar
  90. Macek, K., W. Birge, F. Mayer, A. Buikema, Jr. & A. Maki, 1978. Discussion session synopsis. In J. Cairns, Jr., K. Dickson & A. Maki (eds), Estimating the Hazard of Chemical Substances to Aquatic Life, STP 657. American Society for Testing and Materials, Philadelphia, PA: 27–32.Google Scholar
  91. Maguire, L., 1988. Decision analysis: An integrated approach to ecosystem exploitation and rehabilitation. In J. Cairns, Jr. (ed.), Rehabilitating Damaged Ecosystems, CRC Press, Boca Raton, FL: 105–122.Google Scholar
  92. Margalef, R., 1958. Information theory in ecology. Gen. Syst. 3: 36–71.Google Scholar
  93. Marsh, G. & R. Caplan, 1987. Evaluating health effects of exposure at hazardous waste sites: A review of the state-of-the-art, with recommendations for future research. In J. Andelman & D. Underhill (eds), Health Effects from Hazardous Waste Sites. Lewis Publishers, Chelsea, MI: 3–80.Google Scholar
  94. Marshall, J. S. & D. L. Mellinger, 1980. Dynamics of cadmium stressed plankton communities. Can. J. Fish. aquat. Sci. 37: 403–414.Google Scholar
  95. May, R. M., 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269: 471–477.Google Scholar
  96. Mayer, F. L., Jr. & M. R. Ellersieck, 1986. Manual of acute toxicity: Interpretation and data base for 410 chemicals and 66 species of freshwater animals, Resource Publication 160. United States Department of the Interior, Washington, DC, 505 p pp.Google Scholar
  97. McCarthy, J. F. & L. R. Shugart, 1990. Biomarkers of environmental contamination. Lewis Publishers, Inc., Boca Raton, FL, 460 pp.Google Scholar
  98. Milbrath, L. W., 1978. Indicators of environmental quality. In Indicators of Environmental Quality and Quality of Life, UNESCO Reports and Papers in the Social Sciences SS/CH/38. UNESCO, Paris: 32–56.Google Scholar
  99. Molinari, J., 1989. A calibrated index for the measurement of evenness. Oikos 56: 319–326.Google Scholar
  100. Mount, D. I. & L. Anderson-Carnahan, 1988. Methods for aquatic toxicity identification evaluation, EPA/600/3-88035. National Technical Information Service, Springfield, VA.Google Scholar
  101. Munn, R. E., 1990. Sustainable development: A Canadian perspective. Institute of Environmental Studies, University of Toronto, Ontario, 22 pp.Google Scholar
  102. National Research Council, 1981. Testing for effects of chemicals on ecosystems. National Academy Press, Washington, DC, 103 pp.Google Scholar
  103. Nijkamp, P. & F. Soeteman, 1988. Ecologically sustainable economic development: Key issues for strategic environmental management. Int. J. Social Econ. 15: 88–102.Google Scholar
  104. Norton, S., M. McVey, J. Colt, J. Durda & R. Hegner, 1988. Review of ecological risk assessment methods, EPA/230-10-88-041. National Technical Information Service, Springfield, VA.Google Scholar
  105. O'Connors, H. B., Jr., C. F. Wurster, C. D. Powers, D. C. Biggs & R. G. Rowland, 1978. Polychlorinated biphenyls may alter marine trophic pathways by reducing phytoplankton size and production. Science 201: 737–739.Google Scholar
  106. Odum, E. P., 1985. Trends expected in stressed ecosystems. BioScience 35: 419–422.Google Scholar
  107. Organisation for Economic Co-operation and Development, 1982. Economic and ecological interdependence. OECD, Paris.Google Scholar
  108. Organisation for Economic Co-operation and Development, 1989. Environmental policy benefits: Monetary valuation. OECD, Paris.Google Scholar
  109. Page, T., R. Harris & S. Epstein, 1976. Drinking water and cancer mortality in Louisiana. Science 193: 55–57.Google Scholar
  110. Pantie, R. & H. Buck, 1955. Die biologische Überwachung der Gewässer und die Darstellung der Ergebnisse. Gas. Wassfach. 96–604.Google Scholar
  111. Patrick, R., 1963. The structure of diatom communities under varying ecological conditions. Ann. N. Y. Acad. Sci. 108: 353–358.Google Scholar
  112. Patrick, R., 1977. Ecology of freshwater diatoms. In D. Werner (ed.), The Biology of Diatoms. University of California Press, Berkeley, CA: 284–332.Google Scholar
  113. Patrick, R., M. H. Hohn & J. H. Wallace, 1954. A new method for determining the pattern of diatom flora. Notul. Nat., Acad. nat. Sci. Philad. 259, 12 pp.Google Scholar
  114. Patrick, R., J. Cairns, Jr. & A. Scheier, 1968. The relative sensitivity of diatoms, snails, and fish to twenty common constituents of industrial wastes. Prog. Fish-Cult. 30: 137–140.Google Scholar
  115. Peakall, D. B., 1988. Known effects of pollutants on fish-eating birds in the Great Lakes of North America. In N. W. Scmidtke (ed.), Toxic Contaminants in Large Lakes — Volume I, Chronic Effects of Toxic Contaminants in Large Lakes. Lewis Publishers, Chelsea, MI: 39–54.Google Scholar
  116. Pfister, R. M., J. I. Frea, P. R. Dugan, C. I. Randles, K. Zaebst, J. Duchene, T. McNair & R. Kennedy, 1970. Chlorinated hydrocarbon microparticulate effects on microorganisms isolated from Lake Erie. In Proceedings of the 13th Conference on Great Lakes Research: 82–92.Google Scholar
  117. Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross & R. M. Hughes, 1989. Rapid bioassessment protocols for use in streams and rivers: Benthic macroinvertebrates and fish, EPA 444/4-89-001. National Technical Information Service, Springfield, VA.Google Scholar
  118. Pontasch, K. W., E. P. Smith & J. Cairns, Jr., 1989. Diversity indices, community comparison indices and canonical discriminant analysis: Interpreting the results of multispecies toxicity tests. Wat. Res. 23: 1229–1238.Google Scholar
  119. Rand, G. M. & S. R. Petrocelli, 1985. Fundamentals of aquatic toxicology: Methods and applications. McGraw-Hill International, Washington, DC, 666 pp.Google Scholar
  120. Rapport, D. J., H. A. Regier & T. C. Hutchinson, 1985. Ecosystem behavior under stress. Am. Nat. 125: 617–640.Google Scholar
  121. Regier, H. A., 1979. Changes in species composition of Great Lakes fish communities caused by man. Trans. N. Am. Wildl. Nat. Resour. Conf. 44: 558–566.Google Scholar
  122. Reynoldson, T. B., D. W. Schloesser & B. A. Manny, 1989. Development of a benthic invertebrate objective for mesotrophic Great Lakes waters. J. Great Lakes Res. 15: 669–686.Google Scholar
  123. Roberts, L., 1990. Zebra mussel invasion threatens U.S. waters. Science 249: 1370–1372.Google Scholar
  124. Ryder, R. A. & C. J. Edwards, 1985. A conceptual approach for the application of biological indicators of ecosystem quality in the Great Lakes basin. Report to the Great Lakes Science Advisory Board, Windsor, Ontario, 169 pp.Google Scholar
  125. Ryder, R. A. & S. R. Kerr, 1978. The adult walleye in the percid community — a niche definition based on feeding behavior and food specificity. In R. L. Kendall (ed.), Selected Coolwater Fishes of North America. Am. Fish. Soc. Spec. Publ. No. 11: 39–51.Google Scholar
  126. Ryder, R. A. & S. R. Kerr, 1990. Aquatic harmonic communities: Surrogates of ecosystem integrity. In C. J. Edwards & H. A. Regier (eds), An Ecosystem Approach to the Integrity of the Great Lakes in Turbulent Times. Great Lakes Fishery Commission Special Publication 90–4, Ann Arbor, MI: 239–255.Google Scholar
  127. Sandhu, S. S. & W. R. Lower, 1987. In situ monitoring of environmental genotoxins. In S. S. Sandhu, D. M. DeMarini, M. J. Mass, M. M. Moore & J. L. Mumford (eds), Shortterm Bioassays in the Analysis of Complex Environmental Mixtures V. Plenum Press, New York: 145–160.Google Scholar
  128. Scavia, D., G. A. Lang & J. F. Kitchell, 1988. Dynamics of Lake Michigan plankton: A model evaluation of nutrient loading, competition and predation. Can. J. Fish. aquat. Sci. 45: 16–177.Google Scholar
  129. Schindler, D. W., 1987. Detecting ecosystem responses to anthropogenic stress. Can. J. Fish. aquat. Sci. 44 (Suppl. 1): 6–25.Google Scholar
  130. Seneca, J., 1987. Economic issues in protecting public health and the environment. In M. R. Greenberg (ed.), Public Health and the Environment: The United States Experience. Guilford Press, New York: 351–377.Google Scholar
  131. Sicko-Goad, L. & E. F. Stoermer, 1988. Effects of toxicants on phytoplankton with special reference to the Laurentian Great Lakes. In M. S. Evans (ed.), Toxic Contaminants and Ecosystem Health: A Great Lakes Focus. John Wiley & Sons, New York: 19–52.Google Scholar
  132. Sloof, W., 1983. Benthic macroinvertebrates and water quality assessment: Some toxicological considerations. Aquat. Toxicol. 4: 73–82.Google Scholar
  133. Steedman, R. J. & H. A. Regier, 1990. Ecological bases for an understanding of ecosystem integrity in the Great Lakes basin. In C. J. Edwards & H. A. Regier (eds), An Ecosystem Approach to the Integrity of the Great Lakes in Turbulent Times. Great Lakes Fishery Commission Special Publication 90–4: 257–270.Google Scholar
  134. Stevenson, R. J., 1984. Epilithic and epipelic diatoms in the Sandusky River, with emphasis on species diversity and water pollution. Hydrobiologia 114: 161–175.Google Scholar
  135. Stewart, G., 1987. The leading question: A paper related to a project on economics and environment. Hydrobiologia 149: 141–157.Google Scholar
  136. Stoermer, E. F., 1978. Phytoplankton assemblages as indicators of water quality in the Laurentian Great Lakes. Trans. am. Microsc. Soc. 97: 2–16.Google Scholar
  137. Stoermer, E. F., J. P. Kociolek, C. L. Schelske & D. J. Conley, 1985a. Siliceous microfossil succession in the recent history of Lake Superior. Proc. Acad. nat. Sci. Philad. 137: 106–118.Google Scholar
  138. Stoermer, E. F., J. A. Wolin, C. L. Schelske & D. J. Conley, 1985b. An assessment of ecological changes during the recent history of Lake Ontario based on siliceous algal microfossils preserved in the sediments. J. Phycol. 21: 257–276.Google Scholar
  139. Stoermer, E. F., J. P. Kociolek, C. L. Schelske & D. J. Conley, 1987. Quantitative analysis of siliceous microfossils in the sediments of Lake Erie's central basin. Diatom Res. 2: 113–134.Google Scholar
  140. Stoermer, E. F., C. L. Schelske & J. A. Wolin, 1990. Siliceous microfossil succession in the sediments of McLeod Bay, Great Slave Lake, Northwest Territories. Can. J. Fish. aquat. Sci. 47: 1865–1874.Google Scholar
  141. Suter, G., 1989. Ecological endpoints. In W. Warren-Hicks, B. Parkhurst & S. Baker, Jr. (eds), Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference, EPA 600/3-89-013. National Technical Information Service, Springfield, VA: 2.1 to 2.26.Google Scholar
  142. Szczepanik-van Leeuwen, P. A. & W. R. Penrose, 1983. Functional properties of a microcosm of the freshwater benthic zone and the effects of 2,4-dichlorophenol. Arch. envir. Contam. Toxicol. 12: 427–437.Google Scholar
  143. Thomas, W. H., O. Holm-Hansen, D. L. R. Seibert, F. Azam, R. Hodson & M. Takahashi, 1977. Effects of copper on phytoplankton standing crop and productivity: Controlled ecosystem pollution experiment. Bull. mar. Sci. 27: 34–43.Google Scholar
  144. United States Environmental Protection Agency, 1985. Technical support document for water-quality based toxics Control, EPA-440/4-85-032. National Technical Information Service, Springfield, VA.Google Scholar
  145. Van Voris, P., R. V. O'Neill, W. R. Emanuel & H. H. Shugart, Jr., 1980. Functional complexity and ecosystem stability. Ecology 61: 1352–1360.Google Scholar
  146. Vouk, V., G. Butler, A. Upton, D. Parke & A. Asher (eds), 1987. Methods for assessing the effects of mixtures of chemicals, SCOPE 30, SGOMSEC3. John Wiley & Sons, New York.Google Scholar
  147. Wall, T. M. & R. W. Hammer, 1987. Biological testing to control toxic water pollutants. J. Wat. Pollut. Cont. Fed. 59: 7–12.Google Scholar
  148. Wang, Y. Y., C. P. Flessel, L. R. Williams, K. Chang, M. J. DiBartolomeis, B. Simmons, H. Singer & S. Sun, 1987. Evaluation of guidelines for preparing wastewater samples for Ames testing. In S. S. Sandhu, D. M. DeMarini, M. J. Mass, M. M. Moore & J. L. Mumford (eds), Short-term Bioassays in the Analysis of Complex Environmental Mixtures V. Plenum Press, New York: 67–87.Google Scholar
  149. Ward, J. V. & J. A. Stanford, 1983. The intermediate-disturbance hypothesis: An explanation for biotic diversity patterns in lotic ecosystems. In T. D. Fontaine & S. M. Bartell (eds), Dynamics of Lotic Ecosystems, Ann Arbor Science Publishers, Ann Arbor, MI: 347–356.Google Scholar
  150. Warwick, R. M., 1986. A new method for detecting pollution effects on marine benthic communities. Mar. Biol. 92: 557–562.Google Scholar
  151. Weber, C. I. (ed.), 1973. Biological field and laboratory methods for measuring the quality of surface waters and effluents, EPA-670/4-73-001. U.S. Environmental Protection Agency, Cincinnati, OH.Google Scholar
  152. Wentworth, N., J. Westrick & K. Wang, 1986. Drinking water quality data bases. In F. Kopfler & G. Graun (eds), Environmental Epidemiology. Lewis Publishers Inc., Chelsea, MI: 131–140.Google Scholar
  153. Wessman, C. A., 1990. Landscape ecology: Analytical approaches to pattern and process. In C. J. Edwards & H. A. Regier (eds), An Ecosystem Approach to the Integrity of the Great Lakes in Turbulent Times. Great Lakes Fishery Commission Special Publication 90–4, Ann Arbor, MI: 285–299.Google Scholar
  154. Wise, D. W., 1988. An economic view of the Great Lakes. In N. W. Schmidtke (ed.), Toxic Contamination in Large Lakes; Volume IV: Prevention of Toxic Contamination in Large Lakes. Lewis Publishers, Inc., Chelsea, MI: 19–29.Google Scholar
  155. Wolin, J. A., E. F. Stoermer, C. L. Schelske & D. J. Conley, 1988. Siliceous microfossil succession in recent Lake Huron sediments. Arch. Hydrobiol. 114: 175–198.Google Scholar
  156. Woodwell, G. W., 1967. Radiation and the patterns of nature. Science 156: 461–470.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • John CairnsJr.
    • 1
  • Paul V. McCormick
    • 1
  • B. R. Niederlehner
    • 1
  1. 1.University Center for Environmental and Hazardous Materials StudiesVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations