, Volume 102, Issue 2, pp 81–88 | Cite as

Heavy metal indicator potential of the Asiatic clam (Corbicula fluminea) in artificial stream systems

  • Robert L. GraneyJr.
  • Donald S. Cherry
  • John CairnsJr.


The potential of the Asiatic clam, Corbicula fluminea, as a bioindicator of cadmium, copper, and zinc was studied during 28-day exposures in field artificial streams receiving river water on a once-through basis. Copper, at aquatic concentrations of 0.016 and 0.057 mg l-1, showed the greatest degree of tissue uptake and had bioconcentration factors (BCF) of 22 571 and 17 720, respectively. A significant correlation (coefficient = 0.639) was observed between water concentration and tissue accumulation. Cadmium was intermediate relative to BCF (3 770 and 1 752 at aquatic exposures of 0.023 and 0.055 mg l-1, respectively), and had a correlation coefficient of 0.758. Zinc had the lowest potential for concentration (631, 358, and 511 BCF at 0.218, 0.433, and 0.835 mg l-1, respectively) with a correlation coefficient of 0.478. The rate of accumulation in Corbicula reached a maximum after 11 days for cadmium while a steady state condition for copper was not observed in 28 days. Zinc accumulation, like copper, showed a relative increase throughout the 28-day exposure period. Data from this study show that the Asiatic clam may be a reliable indicator of uptake for exposure to selected heavy metals.


heavy metals bioaccumulation Asiatic clam (Corbicula flumineaartificial streams 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barr, A. J., Goodnight, J. H., Sall, J. P. & Helwig, J. T., 1976. A User's Guide to SAS76. SAS Institute, Raleigh, N. C., 329 pp.Google Scholar
  2. Barr, A. J., Goodnight, J. H., Sall, J. P., Blair, W. H. & Chilko, D. M., 1979. SAS User's Guide, 1979 ed. SAS Institute, Raleigh, N. C., 494 pp.Google Scholar
  3. Betzer, S. B. & Pilson, E. Q., 1975. Copper uptake and excretion by Busycon canaliculatum L. Biol. Bull. 148: 1–15.CrossRefPubMedGoogle Scholar
  4. Brooks, R. R. & Rumsby, M. G., 1965. The biogeochemistry of trace elements uptake by some New Zealand bivalves. Limnol. Oceanogr. 10: 521–527.CrossRefGoogle Scholar
  5. Capelli, R., Contarde, V., Fassone, B. & Zaricchi, G., 1978. Heavy metals in mussels Mytilus galloprovincialis from the Gulf of La Spezia and from the promontory of Portofino, Italy. Mar. Chem. 6: 179–185.CrossRefGoogle Scholar
  6. Cherry, D. S., Rodgers, J. H. Jr., Graney, R. L. & Cairns, J. Jr., 1980. Dynamics and control of the Asiatic clam in the New River, Virginia, Va. Wat. Resour. Res. Center Bull. 123: 72 pp.Google Scholar
  7. Clark, J., Rodgers, J. H. Jr., Dickson, K. L. & Cairns, J. Jr., 1980. Using artificial streams to evaluate pertebants effects on aufwuch structure and function. Wat. Res. Bull. 16: 100–104.CrossRefGoogle Scholar
  8. Cooke, M., Nickless, G., Lawn, R. E. & Roberts, D. J., 1979. Biological availability of sediment-bound cadmium to the edible cockle, Cerastroderma edule. Bull. envir. Contam. Toxicol. 23: 381–386.CrossRefGoogle Scholar
  9. D'Silva, C. & Kureishy, T. W., 1978. Experimental studies on the accumulation of copper and zinc in the green mussel. Mar. Pollut. Bull. 9: 187.CrossRefGoogle Scholar
  10. Eisler, R., Barry, M. M., Lapan, R. L. Jr., Telek, G., Davey, E. W. & Soper, A. E., 1978. Metal survey of the marine clam Pitar morrhuana collected near a Rhode Island (USA) electroplating plant. Mar. Biol. 45: 311–317.CrossRefGoogle Scholar
  11. Eustace, I. J., 1974. Zinc, cadmium, copper, and manganese in species of finfish and shellfish caught in the Derwent Estuary, Tasmania. Aust. J. mar. Freshwat. Res. 25: 209–220.CrossRefGoogle Scholar
  12. Foster, R. B. & Bates, J. M., 1978. Use of freshwater mussels to monitor point source industrial discharge. Envir. Sci. Tech. 12: 958–962.CrossRefGoogle Scholar
  13. Fowler, S. W. & Benayoun, G., 1974. Experimental studies on cadmium flux through marine biota. In: Comparative Studies of Food an Environmental Contamination. Vienna International Atomic Energy Agency. pp. 159–178.Google Scholar
  14. Fowler, S. W. & Benayoun, G., 1976. Influence of environmental factors on selenium flux in two marine invertebrates. Mar. Biol. 37: 59–68.CrossRefGoogle Scholar
  15. Graney, R. L., 1980. Heavy metal dynamics in the Asiatic clam, Corbicula fluminea. M. S. Thesis, Virginia Polytechnic Institute & State University, Blacksburg, Va.Google Scholar
  16. Graney, R. L., Cherry, D. S., Rodgers, J. H. Jr. & Cairns, J. Jr., 1980. The influence of thermal discharges and substrate composition on the population structure and distribution of the Asiatic clam, Corbicula fluminea in the New River, Virginia. Nautilus 94: 130–135.Google Scholar
  17. Hutchinson, T. C., Fedorenko, A., Fitchko, J., Kuja, A., VanLoon, J. & Lichwa, J., 1975. Movement and compartmentation of nickel and copper in an aquatic ecosystem. Trace Substances in Environmental Health 9: 89–104.Google Scholar
  18. Jackim, E., Morrison, G. & Steele, R., 1977. Effects of environmental factors on radiocadmium uptake by four species of marine bivalves. Mar. Biol. 40: 303–308.CrossRefGoogle Scholar
  19. Kopfler, F. G. & Mayer, J., 1973. Concentrations of five trace metals in the waters and oysters (Crassostrea virginica) of Mobile Bay, Alabama. Proc. nat. Shellfish. Ass. 63: 27–34.Google Scholar
  20. Manly, R. & George, W. O., 1977. The occurrence of some heavy metals in populations of the freshwater mussel Anodonta anatina (L.) from the River Thames. Envir. Pollut. 14: 139–154.CrossRefGoogle Scholar
  21. Phillips, D. J. H., 1976a. The common mussel Mytilus edulis as an indicator of pollution by zinc, cadmium, lead, and copper. 1. Effects of environmental variables on uptake of metals. Mar. Biol. 38: 59–69.CrossRefGoogle Scholar
  22. Phillips, D. J. H., 1967b. The common mussel Mytilus edulis as an indicator of pollution by zinc, cadmium, lead, and copper. 2. Relationship of metals in the mussels to those discharged by industry. Mar. Biol. 38: 71–80.CrossRefGoogle Scholar
  23. Phillips, D. J. H., 1977. The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments — a review. Envir. Pollut. 13: 281–317.CrossRefGoogle Scholar
  24. Phillips, D. J. H., 1979. Trace metals in the common mussel, Mytilus edulis (L.), and in alga Fucus vesiculosus (L.) from the region of the Sound (Oresund). Envir. Pollut. 18: 31–43.CrossRefGoogle Scholar
  25. Rodgers, J. H. Jr., Cherry, D. S., Graney, R. L., Dickson, K. L. & Cairns, J. Jr., 1980. Comparison of heavy metal interactions in acute and artificial stream bioassay techniques for the Asiatic clam (Corbicula fluminea). In: J. G. Eaton, P. R. Parrish & A. C. Hendricks, (eds.) Aquatic Toxicology. Am. Soc. Test. Mater. Philad. Pa.: 266–280.Google Scholar
  26. Shuster, C. N. & Pringle, B. H., 1969. Trace metal accumulation by the American Eastern Oyster, Crassostrea virginica. Proc. nat. Shellfish. Ass. 59: 91–103.Google Scholar
  27. United States Environmental Protection Agency, 1979. Method for Chemical Analysis of Water and Wastes. EPA-600–4–79–020.Google Scholar
  28. Vinogradov, A. P., 1953. The elementary chemical composition of marine organisms. Sears Found. mar. Res., New Haven, CT, USA.Google Scholar

Copyright information

© Dr W. Junk Publishers 1983

Authors and Affiliations

  • Robert L. GraneyJr.
    • 1
  • Donald S. Cherry
    • 1
  • John CairnsJr.
    • 1
  1. 1.Biology Department and University Center for Environmental StudiesViriginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations