Advertisement

Environmental Biology of Fishes

, Volume 44, Issue 1–3, pp 287–304 | Cite as

The role of ecomorphological studies in the comparative biology of fishes

  • Stephen F. Norton
  • Joseph J. Luczkovich
  • Philip J. Motta
Article

Synopsis

The goal of an ecomorphological study is to understand the interactions between the morphology of organisms and their ecology. Both the morphology and the ecology presented by an organism are directly or indirectly under the influence of the environmental conditions that the organism experiences and its heritable composition. The development and interpretation of the central element of ecomorphological studies, the comparison between patterns of variation of morphological and ecological characters, depends heavily on the mechanistic framework provided by functional morphological and biomechanical studies. The cause-and-effect hypotheses derived from this comparison can be tested with performance trials. Ecomorphology forms an integral part of comparative biology, along with ecophysiology, behavioral ecology, and evolutionary ecology. Current issues in ecomorphological research that are addressed in this volume include application of a more functional approach to the choice of characters, integration of morphological, behavioral, and physiological information to address adaptation, and the expansion of spatial and temporal (ontogenetic and evolutionary) scales of ecomorphological questions. Future directions for Ecomorphology include broadening the knowledge base, further integration of information from other disciplines, examination of the role of environmental and genetic factors in producing and maintaining ecological and morphological diversity, and application of ecomorphological insights to questions of community structure.

Key words

Performance Functional morphology Ecophysiology Behavioral ecology Evolutionary ecology Fitness Ontogeny Realized niche Fundamental niche Phenotypic plasticity Hypothesis testing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Arnold, S.J. 1983. Morphology, performance and fitness. Amer. Zool. 23: 653–667.Google Scholar
  2. Baker, J.A., S.A. Foster & M.A. Bell. 1995. Armor morphology and reproductive output in threespine stickleback, Gasterosteus aculeatus. Env. Biol. Fish. 44: 225–233.Google Scholar
  3. Balon, E.K. (ed.) 1985. Early life history of fishes. New developmental and evolutionary perspectives. Developments in Env. Biol. Fish. 5, Dr W Junk Publishers, Dordrecht. 280 pp.Google Scholar
  4. Balon, E.K. 1986. Types of feeding in the ontogeny of fishes and the life-history model. Env. Biol. Fish. 16: 11–24.Google Scholar
  5. Balon, E.K., S.S. Crawford & A. Lelek. 1986. Fish communities of the upper Danube River (Germany, Austria) prior to the new Rhein-Main-Donau connection. Env. Biol. Fish. 15: 243–271.Google Scholar
  6. Barel, C.D.N. 1983. Towards a constructional morphology of cichlid fishes (Teleostei, Perciformes). Neth. J. Zool. 33: 357–424.Google Scholar
  7. Basolo, A.L. 1990. Female preference predates the evolution of the sword in swordtail fish. Science 250: 808–810.Google Scholar
  8. Baumgartner, J.V. 1992. Spatial variation of morphology in a freshwater population of the threespine stickleback, Gasterosteus aculeatus. Can. J. Zool. 70: 1140–1148.Google Scholar
  9. Bell, M.A., R.C. Francis & A.C. Havens. 1985. Pelvic reduction and its directional asymmetry in threespine sticklebacks from the Cook Inlet region, Alaska. Copeia 1985: 437–444.Google Scholar
  10. Bell, M.A. & S.A. Foster. (ed) 1994. Evolutionary biology of the threespine stickleback. Oxford University Press, Oxford. 571 pp.Google Scholar
  11. Bellwood, D.R. & J.H. Choat. 1990. A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications. Env. Biol. Fish. 28: 189–214.Google Scholar
  12. Blaxter, J.H.S. 1987. Structure and development of the lateral line. Biol. Rev. 62: 471–514.Google Scholar
  13. Block, B.A. 1991. Evolutionary novelties: how fish have built a heater out of muscle. Amer. Zool. 31: 726–742.Google Scholar
  14. Block, B.A., J.R. Finnerty, A.F.R. Stewart & J. Kidd. 1993. Evolution of endothermy in fish: mapping physiological traits on a molecular phylogeny. Science 260: 210–214.Google Scholar
  15. Bock, W.J. 1980. The definition and recognition of biological adaptation. Amer. Zool. 20: 217–227.Google Scholar
  16. Bock, W.J. 1990. From biologische Anatomie to ecomorphology. Neth. J. Zool. 40: 254–277.Google Scholar
  17. Bock, W.J. & G. von Wahlert. 1965. Adaptation and the form-function complex. Evolution 19: 269–299.Google Scholar
  18. Boehlert, G.W. 1978. Intraspecific evidence for the function of single and double cones in the teleost retina. Science 202: 309–311.Google Scholar
  19. Boehlert, G.W. 1979. Retinal development in postlarval through juvenile Sebastes diploproa: adaptations to a changing photic environment. Rev. Can. Biol. 38: 265–280.Google Scholar
  20. Bronmark, C. & J.G. Miner. 1992. Predator-induced phenotypical change in body morphology in crucian carp. Science 258: 1348–1350.Google Scholar
  21. Brooks, D.R. & D.A. McLennan. 1991. Phylogeny, ecology and behavior. A research program in comparative biology. University of Chicago Press, Chicago. 434 pp.Google Scholar
  22. Casinos, A. 1978. The comparative feeding mechanisms of Gadidae and Macrouridae, Gegenbaurs morpholog. Jahrbuch 124: 434–449.Google Scholar
  23. Cech, J.J. Jr. & M.J. Massingill. 1995. Tradeoffs between respiration and feeding in Sacramento blackfish, Orthodon microlepidotus. Env. Biol. Fish. 44: 157–163.Google Scholar
  24. Chapman, L.J. & K.F. Liem. 1995. Papyrus swamps and the respiratory ecology of Barbus neumayeri. Env. Biol. Fish. 44: 183–197.Google Scholar
  25. Clements, F.E. 1916. Plant succession: an analysis of the development of vegetation. Publication 242, Carnegie Institution of Washington, Washington, D.C. 512 pp.Google Scholar
  26. Connor, E.F. & D. Simberloff. 1984. Neutral models of species' co-occurrence patterns. pp. 316–331. In: D.R. Strong, Jr., D. Simberloff, L.G. Abele & A.B. Thistle (ed.) Ecological Communities: Conceptual Issues and the Evidence, Princeton University Press, Princeton.Google Scholar
  27. Conover, D.O. & B.E. Kynard. 1981. Environmental sex determination: interaction of temperature and genotype in a fish. Science 213: 577–579.Google Scholar
  28. Coombs, S., J. Janssen & J.F. Webb. 1988. Diversity of lateral line systems: evolutionary and functional considerations. 553–593. In: S. Coombs, P. Gorner & H. Munz (ed.) Neurobiology and Evolution of the Lateral Line System, Springer-Verlag, New York.Google Scholar
  29. Coughlin, D.J. 1991. Ontogeny of feeding behavior of first-feeding Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 48: 1896–1904.Google Scholar
  30. Crawford, S.S. & E.K. Balon. 1994. Alternative life histories of the genus Lucania: 3. An ecomorphological explanation of altricial (L. parva) and precocial (L. goodei) species. Env. Biol. Fish. 41: 369–402.Google Scholar
  31. Crowder, L.B. 1986. Ecological and morphological shifts in Lake Michigan fishes: glimpses of the ghost of competition past. pp. 147–157. In: C.A. Simenstad & G.M. Cailliet (ed.) Contemporary Studies on Fish Feeding, Developments in Env. Biol. Fish. 7, Dr W. Junk Publishers, Dordrecht.Google Scholar
  32. Davis, W.P. & R.S. Birdsong. 1973. Coral reef fishes which forage in the water column. Hegol. wiss. Meerunters. 24: 292–306.Google Scholar
  33. Denton, E.J. & J.A.B. Gray. 1993. Stimulation of the acousticolateralis system in clupeid fish by external sources and their own movement. Phil. Trans. R. Soc. Lond. B. 341: 113–127.Google Scholar
  34. De Silva, S.S., P.R.T. Cumaranatunga & C.D. De Silva. 1980. Food, feeding ecology and morphological features associated with feeding in four co-occurring cyprinids (Pisces: Cyprinidae). Neth. J. Zool. 30: 54–73.Google Scholar
  35. Douglas, M.E. & W.J. Matthews. 1992. Does morphology predict ecology? Hypothesis testing within a freshwater steam fish assemblage. Oikos 65: 231–224.Google Scholar
  36. Drost, M.R. 1987. Relation between aiming and catch success in larval fish. Can. J. Fish. Aquat. Sci. 44: 304–315.Google Scholar
  37. Drost, M.R., J.W.M. Osse & M. Muller. 1988. Prey capture by fish larvae, water flow patterns and the effect of escape movements of prey. Neth. J. Zool. 38: 23–45.Google Scholar
  38. Drucker, E.G. & J.S. Jensen. 1991. Functional analysis of a specialized prey processing behavior: winnowing by surfperches (Teleostei: Embiotocidae). J. Morph. 210: 267–287.Google Scholar
  39. Ebeling, A.W. & G.M. Cailliet. 1974. Mouth size and predator strategy in midwater fishes. Deep-Sea Research 21: 959–968.Google Scholar
  40. Echelle, A.A. & I. Kornfield. (ed.). 1984. Evolution of fish species flocks. University of Maine Press, Orono. 257 pp.Google Scholar
  41. Ehlinger, T.J. & D.S. Wilson. 1988. Complex foraging polymorphisms in bluegill sunfish. Proc. Nat. Acad. Sci. USA 85: 1878–1882.Google Scholar
  42. Emery, A.R. 1973. Comparative ecology and functional osteology of fourteen species of damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. Bull. Mar. Sci. 23: 649–770.Google Scholar
  43. Endler, J.A. 1983. Natural and sexual selection on color patterns in poeciliid fishes. Env. Biol. Fish. 9: 173–190.Google Scholar
  44. Feder, M.E., A.F. Bennett, W.W. Burggren & R.B. Huey. (ed.) 1987. New directions in ecological physiology. Cambridge University Press, Cambridge. 364 pp.Google Scholar
  45. Felley, J.D. 1984. Multivariate identification of morphological-environmental relationships within the Cyprinidae (Pisces). Copeia 1984: 442–455.Google Scholar
  46. Felsenstein, J. 1985. Phylogenies and the comparative method. Amer. Nat. 125: 1–15.Google Scholar
  47. Foster, S.A. & J.A. Baker. 1995. Evolutionary interplay between ecology, morphology and reproductive behavior in threespine stickleback, Gasterosteus aculeatus. Env. Biol. Fish. 44: 213–223.Google Scholar
  48. Galis, F. 1990. Ecological and morphological aspects of changes in food uptake through the ontogeny of Haplochromis piceatus. pp. 281–302. In: R.N. Hughes (ed.) Behavioral Mechanisms of Food Selection, Springer-Verlag, Berlin.Google Scholar
  49. Garland, T., Jr. & J.B. Losos. 1994. Ecological morphology of locomotor performance in squamate reptiles. pp. 240–302. In: P.C. Wainwright & S.M. Reilly (ed.) Ecological Morphology, University of Chicago Press, Chicago.Google Scholar
  50. Gatz, A.J., Jr. 1979a. Ecological morphology of freshwater stream fishes. Tulane Studies in Zoology and Botany 21: 91–124.Google Scholar
  51. Gatz, A.J., Jr. 1979b. Community organization in fishes as indicated by morphological features. Ecology 60: 711–718.Google Scholar
  52. Gilpin, M.E. & J.M. Diamond. 1984. Are species co-occurrences on islands non-random, and are null hypotheses useful in community ecology. pp. 297–315. In: D.R. Strong, Jr., D. Simberloff, L.G. Abele & A.B. Thistle (ed.) Ecological Communities: Conceptual Issues and the Evidence, Princeton University Press, Princeton.Google Scholar
  53. Gladfelter, W.B. & E.H. Gladfelter. 1978. Fish community structure as a function of habitat structure on West Indian patch reefs. Rev. Trop. Biol. 26: 65–84.Google Scholar
  54. Gleason, H.A. 1926. The individualistic concept of plant associations. Bull. Torrey Bot. Club 53: 7–26.Google Scholar
  55. Gould, S.J. & R.C. Lewontin. 1979. The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B 205: 581–598.Google Scholar
  56. Gould, S.J. & E.S. Vrba. 1982. Exaptation—a missing term in the science of form. Paleobiology 8: 4–15.Google Scholar
  57. Grossman, G.D., P.B. Moyle & J.O. Whittaker, Jr. 1982. Stochasticity in structural and functional characteristics of an Indiana stream fish assemblage: a test of community theory. Amer. Nat. 120: 423–454.Google Scholar
  58. Herring, P.J. 1982. Aspects of bioluminescence of fishes. Ocean. Mar. Biol. Ann. Rev. 20: 415–470.Google Scholar
  59. Hobson, E.S., W.N. McFarland & J.R. Chess. 1981. Crepuscular and nocturnal activities of California fishes, with consideration of their scotopic visual pigments and the photic environment. U.S. Fish. Bull. 79: 1–30.Google Scholar
  60. Hoogerhoud, R.J.C., F. Witte & C.D.N. Barel. 1983. Ecological differentiation of two closely-resembling Haplochromis species from Lake Victoria (H. iris and H. hiatus, Pisces, Cichlidae). Neth. J. Zool. 33: 283–305.Google Scholar
  61. Hori, M. 1993. Frequency-dependent natural selection in the handedness of scale-eating cichlid fish. Science 260: 216–219.Google Scholar
  62. Houde, A.E. & J.A. Endler. 1990. Correlated evolution of female mating preference and male color patterns in the guppy, Poecilia reticulata. Science 248: 1405–1408.Google Scholar
  63. Hueter, R.E. 1990. Adaptation for spatial vision in sharks. J. Exp. Zool. Supp. 5: 130–141.Google Scholar
  64. Huey, R.B. & A.F. Bennett. 1986. A comparative approach to field and laboratory studies in evolutionary biology. pp. 82–98. In: M.E. Feder & G.V. Lauder (ed.) Predator-Prey Relationships: Perspectives and Approaches from the Study of Lower Vertebrates, University of Chicago Press, Chicago.Google Scholar
  65. Jackson, D.A., K.M. Somers & H.H. Harvey. 1992. Null models and fish communities: evidence of nonrandom patterns. Amer. Nat. 139: 930–951.Google Scholar
  66. Janssen, J., S. Coombs, D. Hoekstra & C. Platt. 1987. Anatomy and differential growth of the lateral line system of the mottled sculpin, Coitus bairdi (Scorpaeniformes: Cottidae). Brain Beh. Evol. 30: 210–229.Google Scholar
  67. Jayne, B.C. & A.F. Bennett. 1989. The effect of tail morphology on the locomotor performance in snakes: a comparison of experimental and correlative methods. J. Exp. Zool. 253: 126–133.Google Scholar
  68. Jones, W. & J. Janssen. 1992. Development of the lateral line and its use in feeding in larval mottled sculpin. Copeia 1992:485–492.Google Scholar
  69. Kalmijn, A.J. 1989. Functional evolution of lateral line and inner ear sense organs. pp. 187–215. In: S. Coombs, P. Gorner & H. Munz (ed.) Neurobiology and Evolution of the Lateral Line System, Springer-Verlag, New York.Google Scholar
  70. Keast, A. & D. Webb. 1966. Mouth and body form relative to feeding ecology in the fish fauna of a small lake, Lake Opinicon, Ontario. J. Fish. Res. Board Can. 23: 1845–1874.Google Scholar
  71. Krebs, J.R. & N.B. Davies. (ed.) 1978. Behavioral ecology. Blackwell Scientific Publishers, Oxford. 494 pp.Google Scholar
  72. Kornfield, L. D.C. Smith & P.S. Gagnon. 1982. The cichlid fish of Cuatro Cienegas, Mexico: direct evidence of conspecificity among distinct trophic morphs. Evolution 36: 658–664.Google Scholar
  73. Kotrschal, K. 1995. Ecomorphology of solitary chemosensory cell systems in fish: a review. Env. Biol. Fish. 44: 143–156.Google Scholar
  74. Kotrschal, K. & A. Goldschmid. 1983. Food preferences, morphology and arrangement of teeth of 14 species of Adriatic blennies. Jugosl. 19: 217–219.Google Scholar
  75. Kotrschal, K., R. Peters & J. Atema. 1993. Sampling and behavioral evidence for mucus detection in a unique chemosensory organ: the anterior dorsal fin of rocklings (Ciliata mustela: Gadidae: Teleostei). Zool. Jahrb. Physiol. 97: 47–67.Google Scholar
  76. Kryzhanovsky, S.G. 1949. Eco-morphological principles in the developments of carps, loaches, and catfishes (Cyprinoidei and Siluroidei). Trudy Inst. Morph. Zhiv. Severtsova 1: 5–332. (In Russian).Google Scholar
  77. Lammens, E.H.R.R. & W. Hoogenboezem. 1991. Diets and feeding behavior. pp. 353–376. In: I.J. Winfield & J.S. Nelson (ed.) Cyprinid Fishes, Systematics, Biology and Exploitation, Chapman & Hall, London.Google Scholar
  78. Lasker, R. (ed.) 1981. Marine fish larvae, morphology, ecology and relation to fisheries. University of Washington Press, Seattle. 131 pp.Google Scholar
  79. Lauder, G.V. 1983. Neuromuscular patterns and the origin of trophic specialization in fishes. Science 219: 1235–1237.Google Scholar
  80. Lauder, G.V. 1992. Historical biology and the problem of design. J. Theor. Biol. 97: 57–67.Google Scholar
  81. Lauder, G.V. A.M. Leroi & M.R. Rose. 1993. Adaptations and history. Trends Ecol. Evol. 8: 294–297.Google Scholar
  82. Laur, D.R. & A.W. Ebeling. 1983. Predator-prey relationships in surfperches. Env. Biol. Fish. 8: 217–229.Google Scholar
  83. Lavin, P.A. & J.D. McPhail. 1985. The evolution of freshwater diversity in the threespine stickleback (Gasterosteus aculeatus): site-specific differentiation of trophic morphology. Can. J. Zool. 63: 2632–2638.Google Scholar
  84. Lavin, P.A. & J.D. McPhail. 1986. Adaptive divergence of trophic phenotypes among freshwater populations of the threespine stickleback (Gasterosteus aculeatus). Can. J. Fish. Aquat. Sci. 43: 2455–2463.Google Scholar
  85. Levine, J.S. & E.F. MacNichol. 1979. Visual pigments in teleost fishes: effects of habitat, microhabitat, and behavior on visual system evolution. Sens. Proc. 3: 95–131.Google Scholar
  86. Liem, K.F. 1991. Functional morphology and phylogenetic testing within the framework of symecomorphosis. Acta Morphol. Neerl.-Scand. 27: 119–131.Google Scholar
  87. Liem, K.E. 1993. Ecomorphology of the teleostean skull. pp. 422–452. In: J. Hanken & B.K. Hall (ed.) The Skull, Functional and Evolutionary Mechanisms, Volume 3, The University of Chicago Press, Chicago.Google Scholar
  88. Liem, K.F. & L.S. Kaufman. 1984. Intraspecific macroevaluation: functional biology of the polymorphic cichlid species Cichlosoma minckleyi. pp. 203–215. In: A.A. Echelle & I. Kornfield (ed.) Evolution of Fish Species Flocks, University of Maine Press, Orono.Google Scholar
  89. Long, J.H., Jr. 1995. Morphology, mechanics, and locomotion: the relation between the notochord and swimming motions in sturgeon. Env. Biol. Fish. 44: 199–211.Google Scholar
  90. Losos, J.B. 1990a. Ecomorphology, performance capability, and scaling of West Indian Anolis lizards: an evolutionary analysis. Ecol. Mon. 60: 369–388.Google Scholar
  91. Losos, J.B. 1990b. The evolution of form and function: morphology and locomotor performance in West Indian Anolis lizards. Evolution 44: 1189–1203.Google Scholar
  92. Losos, J.B. & D.B. Miles. 1994. Adaptation, constraint, and the comparative method: phylogenetic issues and methods. pp. 60–98. In: P.C. Wainwright & S.M. Reilly (ed.) Ecological Morphology, University of Chicago Press, Chicago.Google Scholar
  93. Luczkovich, J.J. & E.J. Stellwag. 1993. Isolation of cellulolytic microbes from the intestinal tract of the pinfish, Lagodon rhomboides: size-related changes in diet and microbial abundance. Mar. Biol. 116: 381–388.Google Scholar
  94. Luczkovich, J.J., S.F. Norton & R.G. Gilmore. 1995. The influence of oral anatomy on prey selection during the ontogeny of two percoid fishes, Lagodon rhomboides and Centropomus undecimalis. Env. Biol. Fish. 44: 79–95.Google Scholar
  95. Malmquist, H.J., S.S. Snorrason, S. Skúlason, B. Jonsson, O.T. Sandlund & P.M. Jonasson. 1992. Diet differentiation in polymorphic Arctic charr in Thingvallavatn, Iceland. J. Animal Ecol. 61: 21–305.Google Scholar
  96. Martin, K.L.M. 1995. Time and tide wait for no fish: intertidal fishes out of water. Env. Biol. Fish. 44: 165–181.Google Scholar
  97. Mas-Riera, J. 1991. Changes during growth in the retinal structure of three hake species, Merluccius spp. (Teleostei: Gadiformes), in relation to their depth distribution and feeding. J. Exp. Mar. Biol. Ecol. 152: 91–104.Google Scholar
  98. McFarland, W.N. 1991. The visual world of coral reef fishes. pp. 16–38. In: Sale, P.E. (ed.) The Ecology of Fishes on Coral Reefs, Academic Press, San Diego.Google Scholar
  99. McLellan, T. 1977. Feeding strategies of the macrourids. Deep-Sea Research 24: 1019–1036.Google Scholar
  100. Mensinger, A.F. 1995. Ecomorphological adaptations to bioluminescence in Porichthys notatus. Env. Biol. Fish. 44: 133–142.Google Scholar
  101. Meyer, A. 1987. Phenotypic plasticity and heterochromy in Cichlosoma managuence (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution 41: 1357–1369.Google Scholar
  102. Mittelbach, G.G., C.W. Osenberg & P.C. Wainwright. 1992. Variation in resource abundance affects diet and feeding morphology in the pumpkinseed sunfish (Lepomis gibbosus). Oecologia 90: 8–13.Google Scholar
  103. Moller, A.P. 1992. Female swallow preference for symmetrical male sexual ornaments. Nature 347: 238–240.Google Scholar
  104. Moody, R.C., J.M. Helland & R.A. Stein. 1983. Escape tactics used by bluegills and fathead minnows to avoid predation by tiger muskellunge. Env. Biol. Fish. 8: 61–65.Google Scholar
  105. Motta, P.J. 1988. Functional morphology of the feeding apparatus of ten species of Pacific butterflyfishes (Perciformes, Chaetodontidae): an ecomorphological approach. Env. Biol. Fish. 22: 39–67.Google Scholar
  106. Motta, P.J. 1989. Dentition patterns among Pacific and Western Atlantic butterflyfishes (Perciformes, Chaetodontidae): relationship to feeding ecology and evolutionary history. Env. Biol. Fish. 25: 159–170.Google Scholar
  107. Motta, P.J., K.B. Clifton, P. Hernandez & B.T. Eggold. 1995a. Ecomorphological correlates in ten species of subtropical seagrass fishes: diet and microhabitat utilization. Env. Biol. Fish. 44: 37–60.Google Scholar
  108. Motta, P.J. & K.M. Kotrschal. 1992. Correlative, experimental, and comparative evolutionary approaches in ecomorphology. Neth. J. Zool. 42: 400–415.Google Scholar
  109. Motta, P.J., S.F. Norton & J.J. Luczkovich. 1995. Perspectives on the ecomorphology of bony fishes. Env. Biol. Fish. 44: 11–20.Google Scholar
  110. Moyle, P.B. & F.R. Senanayake. 1984. Resource partitioning among the fishes of rainforest streams in Sri Lanka. J. Zool. 202: 195–223.Google Scholar
  111. Nagelkerke, L.A.J., F.A. Sibbing, J.G.M. van den Boogaard, H.R.R. Lammens & J.W.M. Osse. 1994. The barbs (Barbus spp.) of Lake Tana: a forgotten species flock? Env. Biol. Fish. 39: 1–22.Google Scholar
  112. Nicoletto, P.E. 1991. The relationship between male ornamentation and swimming performance in the guppy, Poecilia reticulata. Behav. Ecol. Sociobiol. 28: 365–370.Google Scholar
  113. Nitecki, M.H. (ed.) 1990. Evolutionary innovations. University of Chicago Press, Chicago. 304 pp.Google Scholar
  114. Norton, S.F. 1988. The role of the gastropod shell and operculum in inhibiting predation by fishes. Science 241: 92–94.Google Scholar
  115. Norton, S.F. 1991. Capture success and diet of cottid fishes: the role of predator morphology and attack kinematics. Ecology 72: 1807–1819.Google Scholar
  116. Norton, S.F. 1995. A functional approach to the ecomorphological patterns of feeding in cottid fishes. Env. Biol. Fish. 44: 61–78.Google Scholar
  117. Norton, S.F. & E.L. Brainerd. 1993. Convergence on the feeding mechanics of ecomorphologically similar species in the Centrarchidae and Cichlidae. J. Exp. Biol. 176: 11–29.Google Scholar
  118. Osse, J.W.M. 1990. Form changes in fish larvae in relation to changing demands of function. Neth. J. Zool. 40: 362–385.Google Scholar
  119. Pagel, M.D. & P.H. Harvey. 1988. Recent developments in the analysis of comparative data. Quart. Rev. Biol. 63: 413–440.Google Scholar
  120. Partridge, J.C. 1989. Visual pigments of deep-sea fishes: ecophysiology and molecular biology. Prog. Underwater Sci. 14: 17–31.Google Scholar
  121. Purcell, S.W. & D.R. Bellwood. 1993. A functional analysis of food procurement in two surgeonfish species, Acanthurus nigrofuscus and Ctenochaetus striatus (Acanthuridae). Env. Biol. Fish. 37: 139–159.Google Scholar
  122. Reeve, H.K. & P.W. Sherman. 1993. Adaptation and the goals of evolutionary research. Quart. Rev. Biol. 68: 1–32.Google Scholar
  123. Rahel, F.J., J.D. Lyons & P.A. Cochran. 1984. Stochastic or deterministic regulations of assemblage structure? It may depend on how the assemblage is defined. Amer. Nat. 124: 583–589.Google Scholar
  124. Reilly, S.M. & P.C. Wainwright. 1994. Conclusion: ecological morphology and the power of integration. pp. 339–354. In: P.C. Wainwright & S.M. Reilly (ed.) Ecological Morphology, University of Chicago Press, Chicago.Google Scholar
  125. Reimchen, T.E., E.M. Stinson & J.S. Nelson. 1985. Multivariate differentiation of parapatric and allopatric populations of three-spined stickleback in the Sangan River watershed, Queen Charlotte Islands. Can. J. Zool. 63: 2944–2951.Google Scholar
  126. Reimchen, T.E. 1992. Injuries on sticklebacks from attacks by a toothed predator (Oncorhynchus) and implications for the evolution of lateral plates. Evolution 46: 1224–1230.Google Scholar
  127. Reist, J.D. 1980a. Selective predation upon pelvic phenotypes of brook sticklebacks, Culaea inconstans, by northern pike, Esox lucius. Can. J. Zool. 58: 1245–1252.Google Scholar
  128. Reist, J.D. 1980b. Predation upon pelvic phenotypes of brook sticklebacks, Culaea inconstans, by selected invertebrates. Can. J. Zool. 58: 1253–1258.Google Scholar
  129. Reznick, D.N., H. Bryga & J.A. Endler. 1990. Experimentally induced life-history evolution in a natural population. Nature 346: 357–359.Google Scholar
  130. Roberts, T.S. 1974. Dental polymorphism and systematics in Saccodon, a neotropical genus of freshwater fishes (Paradontidae, Characoidei). J. Zool. 173: 303–321.Google Scholar
  131. Robinson, B.W. & D.S. Wilson. 1994. Character release and displacement in fishes: a neglected literature. Amer. Nat. 144: 596–627.Google Scholar
  132. Rodd, F.H. & D.N. Reznick. 1991. Life history evolution in guppies: III. The impact of prawn predation on guppy life histories. Oikos 62: 13–19.Google Scholar
  133. Sage, R.D. & R.K. Selander. 1975. Trophic radiation through polymorphism in cichlid fishes. Proc. Nat. Acad. Sci. 72: 4669–4673.Google Scholar
  134. Sale, P.F. 1978. Coexistence of coral reef fishes — a lottery for living space. Env. Biol. Fish. 3: 85–102.Google Scholar
  135. Sanderson, S.L. 1990. Versatility and specialization in labrid fishes: ecomorphological implications. Oecologia 84: 272–279.Google Scholar
  136. Sanderson, S.L., J.J. Cech, Jr. & M.R. Patterson. 1991. Fluid dynamics in suspension-feeding blackfish. Science 251: 1346–1348.Google Scholar
  137. Sandland, O.T, K. Gunnarsson, P.M. Jonasson, B. Jonsson, T. Lindem, K.P. Magnusson, H.J. Malmquist, H. Sigurjonsdottir, S. Skúlason & S.S. Snorrason. 1992. The arctic charr Salvelinus alpinus in Thingvallavatn. Oikos 64: 305–351.Google Scholar
  138. Schluter, D. 1994. Experimental evidence that competition promotes divergence in adaptive radiation. Science 266: 798–801.Google Scholar
  139. Schluter, D. 1995. Adaptive radiation in sticklebacks: trade-offs in feeding performance and growth. Ecology 76: 82–90.Google Scholar
  140. Schluter, D. & J.D. McPhail. 1992. Ecological character displacement and speciation in sticklebacks. Amer. Nat. 140: 85–108.Google Scholar
  141. Schmitt. R.J. & S.J. Holbrook. Gape-limitation, foraging tactics and prey size selectivity of two microcarnivorous species of fish. Oecologia 63: 6–12.Google Scholar
  142. Sibbing, F.A. 1982. Pharyngeal mastication and food transport in the carp (Cyrpinus carpio:) A cineradiographic and electromyographic study. J. Morphol. 172: 223–258.Google Scholar
  143. Sibbing, F.A. 1988. Specializations and limitations in the utilization of food resources by the carp, Cyrpinus carpio: a study of oral food processing. Env. Biol. Fish. 22: 161–178.Google Scholar
  144. Sibbing, F.A., L.A.J. Nagelkerke & J.W.M. Osse. 1994. Ecomorphology as a tool in fisheries: identification and eco-typing of Lake Tana barbs (Barbus intermedius complex), Ethiopia. Neth. J. Agricul. Sci. 42: 77–85.Google Scholar
  145. Sinervo, B. & P. Licht. 1991. Proximate constraints on the evolution of egg size, number, and total clutch mass in lizards. Science 252: 1300–1302.Google Scholar
  146. Sinervo, B., P. Dougherty, R.B. Huey & K. Zamudio. 1992. Allometric engineering: a causal analysis of natural selection on offspring size. Science 258: 1927–1930.Google Scholar
  147. Smirnov, S.A., A.P. Makeyeva & A.I. Smirnov. 1995. Development of ecornorphology of fishes in Russia. Env. Biol. Fish. 44: 23–33.Google Scholar
  148. Stoner, A.W. & R.J. Livingston. 1984. Ontogenetic patterns in diet and feeding morphology in sympatric sparid fishes from seagrass meadows. Copeia 1984: 174–187.Google Scholar
  149. Sturmbauer, C. W. Mark & R. Dallinger. 1992. Ecophysiology of Aufwuchs-eating cichlids in Lake Tanganyika: niche separation by trophic specialization. Env. Biol. Fish. 35: 283–290.Google Scholar
  150. Swain, D.P. 1992a. The functional basis of natural selection for vertebral traits of larvae in the stickleback Gasterosteus aculeatus. Evolution 46: 987–997.Google Scholar
  151. Swain, D.P. 1992b. Selective predation for vertebral phenotype in Gasterosteus aculeatus: reversal in the direction of selection at different larval sizes. Evolution 46: 998–1013.Google Scholar
  152. Turner, B.J. & D.J. Grosse. 1980. Trophic differentiation in Ilyodon, a genus of stream-dwelling goodeid fishes: speciation versus ecological polymorphism. Evolution 34: 259–270.Google Scholar
  153. Turner, B.J., T.A. Grudzien, K.P. Adkinsson & M.M. White. 1983. Evolutionary genetics of trophic differentiation in goodeid fishes of the genus Ilyodon. Env. Biol. Fish. 9: 159–172.Google Scholar
  154. Van der Meer, H.J., G.C. Anker & C.D.N. Barel. 1995. Ecomorphology of retinal structures in zooplanktivorous haplochromine cichlids (Pisces) from Lake Victoria. Env. Biol. Fish. 44: 115–132.Google Scholar
  155. Verigina, I.A. 1991. Basic adaptations of the digestive system in bony fishes as a function of diet. J. Ichthyol. 31: 8–20.Google Scholar
  156. Wainwright, P.C. 1988. Morphology and ecology: functional basis of feeding constraints in Carribeaan labrid fishes. Ecology 69: 635–645.Google Scholar
  157. Wainwright, P.C. & B.A. Richard. 1995. Predicting patterns of prey use from morphology of fishes. Env. Biol. Fish. 44: 97–113.Google Scholar
  158. Wainwright, P.C. & G.V. Lauder. 1986. Feeding biology of sunfishes: patterns of variation in the feeding mechanism. Zool. J. Linn. Soc. 88: 217–228.Google Scholar
  159. Wainwright, P.C. & G.V. Lauder. 1992. The evolution of feeding biology in sunfishes (Centrarchidae). pp. 472–491. In: R.L. Mayden (ed.) Systematics, Historical Ecology, and North American Freshwater Fishes, Stanford University Press, Palo Alto.Google Scholar
  160. Wainwright, P.C., C.W. Osenberg & G.G. Mittelbach. 1991. Trophic polymorphism in the pumpkinseed sunfish (Lepomis gibbosus Linnaeus): effect of environment on ontogeny. Functional Ecology 5: 40–55.Google Scholar
  161. Wainwright, P.C. & S.M. Reilly. (ed.) 1994. Ecological morphology. University of Chicago Press, Chicago. 367 pp.Google Scholar
  162. Watson, D.J. & E.K. Balon. 1984. Ecomorphological analysis of fish taxocenes in rainforest streams in northern Borneo. J. Fish Biol. 25: 371–384.Google Scholar
  163. Webb, J.F. 1989. Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain Behav. Evol. 33: 34–53.Google Scholar
  164. Webb, P.W. 1984. Body form, locomotion, and foraging in aquatic vertebrates. Amer. Zool. 24: 107–120.Google Scholar
  165. Webb, P.W. 1986. Effects of body form and response threshold on the vulnerability of four species of teleost prey attacked by largemouth bass (Micropterus salmoides). Can. J. Fish. Aquat. Sci. 43: 763–771.Google Scholar
  166. Werner, E.E. 1977. Species packing and niche complementarity in three sunfishes. Amer. Nat. 111: 553–578.Google Scholar
  167. Werner, E.E. & D.J. Hall. 1979. Foraging efficiency and habitat switching in competing sunfishes. Ecology 60: 256–264.Google Scholar
  168. Westneat, M.W. 1990. Feeding mechanics of teleost fishes (Labridae: Perciformes): a test of four-bar linkage models. J. Morph. 205: 269–295.Google Scholar
  169. Westneat, M.W. 1995. Phylogenetic systematics and biomechanics in ecomorphology. Env. Biol. Fish. 44: 263–283.Google Scholar
  170. Whitear, M. & R.M. Moate. 1994. Chemosensory cells in the oral epithelium of Raja clavata (Chondrichthys). J. Zool. Lond. 232: 295–312.Google Scholar
  171. Wiehs, D. & P.W. Webb. 1983. Optimization of locomotion. pp. 339–371. In: P.W. Webb & D. Weihs (ed.) Fish Biomechanics, Praeger, New York.Google Scholar
  172. Wikramanayake, E.D. 1990. Ecomorphology and biogeography of a tropical stream fish assemblage: evolution of assemblage structure: Ecology 71: 1756–1764.Google Scholar
  173. Wimberger, P. 1991. Plasticity of jaw and skull morphology in the Neotropical cichlids Geophagus brasiliensis and G. steindachneri. Evolution 45: 1545–1563.Google Scholar
  174. Winemiller, K.O. 1991. Ecomorphological diversification on lowland freshwater fish assemblages from five biotic regions. Ecology 61: 343–365.Google Scholar
  175. Winemiller, K.O., L.C. Kelso-Winemiller & A.L. Brenkert. 1995. Ecomorphological diversification and convergence in fluvial cichlid fishes. Env. Biol. Fish. 44: 235–261.Google Scholar
  176. Witte, F., C.D.N. Barel & R.J.C. Hoogerhoud. 1990. Phenotypic plasticity of anatomical structures and its ecomorphological significance. Neth. J. Zool. 40: 278–298.Google Scholar
  177. Wu, E. 1995. Kinematic analysis of jaw protrusion in orectolobiform sharks: a new mechanism for jaw protrusion in elasmobranchs. J. Morph. 222: 175–190.Google Scholar
  178. Yant, P.R., J.R. Karr & P.L. Angermeier. 1984. Stochasticity in stream fish communities: an alternative interpretation. Amer. Nat. 124: 573–582.Google Scholar
  179. Zihler, F. 1982. Gross morphology and configuration of digestive tracts of Cichlidae (Teleostei, Perciformes): phylogenetic and functional significance. Neth. J. Zool. 32: 544–571.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Stephen F. Norton
    • 1
  • Joseph J. Luczkovich
    • 1
    • 2
  • Philip J. Motta
    • 3
  1. 1.Department of BiologyEast Carolina UniversityGreenvilleU.S.A.
  2. 2.Institute for Coastal and Marine ResourcesEast Carolina UniversityGreenvilleU.S.A.
  3. 3.Department of BiologyUniversity of South FloridaTampaU.S.A.

Personalised recommendations