, Volume 284, Issue 1, pp 5–12 | Cite as

Empirical evidence of the importance of sediment resuspension in lakes

  • R. Douglas Evans


This paper reviews the empirical evidence for bottom sediment resuspension, which has been documented in many aquatic systems, and attempts to put those observations into a predictive framework. The evidence suggests that resuspension is episodic in all systems with the spatial extent of resuspension being determined by the wind speed, duration of disturbance, effective lake fetch and lake morphometry. The rates of deposition of resuspended material vary greatly with measurements recorded between 0.5 and 50 g m−2 d−1. In many systems and at many times of year resuspended material comprises the majority of the flux of particles to lake bottoms. An order-of-magnitude estimate of the long-term contribution of resuspended material to the total flux of particulate matter is 85%.

Key words

sedimentation flux resuspension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, N. J., 1990. Spatial pattern of recent sediment and diatom accumulation in a small, monomictic, eutrophic lake. J. Paleolimnol. 3: 143–160.Google Scholar
  2. Bengtsson, L., T. Hellström & L. Rakoczi, 1990. Redistribution of sediments in three Swedish lakes. Hydrobiologia 192: 167–181.Google Scholar
  3. Bloesch, J., 1982. Inshore-offshore sedimentation differences resulting from resuspension in the eastern basin of Lake Erie. Can. J. Fish. aquat. Sci. 39: 748–759.Google Scholar
  4. Bloesch, J., 1994. A review of methods used to measure sediment resuspension. Hydrobiologia 284: 13–18.Google Scholar
  5. Bloesch, J., & N. M. Burns, 1980. A critical review of sediment trap technique. Schweiz. Z. Hydrol. 42: 15–55.Google Scholar
  6. Bloesch, J. & U. Uehlinger, 1986. Horizontal sedimentation differences in a eutrophic Swiss lake. Limnol. Oceanogr. 31: 1094–1109.Google Scholar
  7. Carper, G. L. & R. W. Bachmann, 1984. Wind resuspension of sediments in a prairie lake. Can. J. Fish. aquat. Sci. 41: 1763–1767.Google Scholar
  8. Cornett, R. J., L. A. Chant, B. A. Risto & E. Bonvin, 1994. Identifying resuspended particles using isotope ratios. Hydrobiologia 284: 69–77.Google Scholar
  9. Dillon, P. J. & H. E. Evans, 1993. A comparison of phosphorus retention in lakes determined from mass balance and sediment core calculations. Wat. Res. 27: 659–668.Google Scholar
  10. Dillon, P. J., R. D. Evans & L. A. Molot, 1990. Retention and resuspension of phosphorus, nitrogen and iron in a central Ontario lake. Can. J. Fish. aquat. Sci. 47: 1269–1274.Google Scholar
  11. Einstein, H. A. & R. B. Krone, 1962. Experiments to determine modes of cohesive sediment transport in salt water. J. Geophys. Res.: 1451–1461.Google Scholar
  12. Evans, R. D. & L. Håkanson, 1992. Prediction of gross and net sedimentation in small lakes. Hydrobiologia 235/236 Dev. Hydrobiol. 75: 143–152.Google Scholar
  13. Evans, R. D. & F. H. Rigler, 1980. Measurement of whole lake sediment accumulation and phosphorus retention using lead-210 dating. Can. J. Fish. aquat. Sci. 37: 817–822.Google Scholar
  14. Evans, R. D. & F. H. Rigler, 1983. A test of lead-210 dating for the measurement of whole lake soft sediment accumulation. Can. J. Fish. aquat. Sci. 40: 506–515.Google Scholar
  15. Flower, R. J., 1991. Field calibration and performance of sediment traps in a eutrophic holomictic lake. J. Paleolimnol. 5: 175–188.Google Scholar
  16. Fuhs, G. W., 1973. Improved device for the collection of sedimenting matter. Limnol. Oceanogr. 18: 989–993.Google Scholar
  17. Gasith, A., 1975. Tripton sedimentation in eutrophic lakes-simple correction for the resuspended matter. Verh. int. Ver. Limnol. 19: 116–122.Google Scholar
  18. Gloor, M., A. Wüest & M. Münnich, 1994. Benthic boundary mixing and resuspension induced by internal seiches. Hydrobiologia 284: 59–68.Google Scholar
  19. Håkanson, L., P. Andersson, T. Andersson, Å. Bengtsson, P. Grahn, J-Å. Johansson, H. Kvannäs, G. Lingren & Å. Nilsson, 1990. Measures to reduce mercury in lake fish. Final Report from the Liming-Mercury-Cesium Project, Nat. Envir. Prot. Agency, S-171 25 Solna, Sweden, SNV PM 3818, 189 p.p.Google Scholar
  20. Håkanson, L. & M. Jansson, 1983. Principles of Lake Sedimentology. Springer-Verlag, Berlin.Google Scholar
  21. Hilton, J., J. P. Lishman & P. V. Allen, 1986. The dominant processes of sediment distribution and focusing in a small, eutrophic, monomictic lake. Limnol. Oceanogr. 31: 125–133.Google Scholar
  22. Kansanen, P. H., T. Jaakkola, S. Kulmala & R. Suutarinen, 1991. Sedimentation and distribution of gamma-emitting radionuclides in bottom sediments of southern Lake Päijänne, Finland, after the Chernobyl accident. Hydrobiologia 222: 121–140.Google Scholar
  23. Kumagai, M., 1988. Predictive model for resuspension and deposition of bottom sediment in a lake. Jpn. J. Limnol. 49: 185–200.Google Scholar
  24. Rosa, F., 1985. Sedimentation and sediment resuspension in Lake Ontario. J. Great Lakes Res. 11: 13–25.Google Scholar
  25. Smith, P. J., 1983. Sediment chemistry of lakes in the Muskoka-Haliburton study area. Ontario Ministry of the Environment, Water Resources Branch, Data Report DR 83/7.Google Scholar
  26. Ziegler, C. K. & W. Lick, 1988. The transport of fine-grained sediments in shallow waters. Envir. Geol. Wat. Sci. 11: 123–132.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • R. Douglas Evans
    • 1
  1. 1.Environmental Sciences CentreTrent UniversityPeterboroughCanada

Personalised recommendations