Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Trend, seasonality, cycle, and irregular fluctuations in primary productivity at Lake Tahoe, California-Nevada, USA


Primary productivity has been measured routinely at Lake Tahoe since 1967, and a number of mechanisms underlying variability in the productivity record have now been identified. A long-term trend due to nutrient loading dominates the series. Seasonality also is prominent, apparently controlled by direct physical factors unrelated to the trophic cascade. A 3-yr cycle has been detected and several possible mechanisms are considered. Irregular fluctuations also are present, caused in part by isolated events (a forest fire) and recurring but variable phenomena (spring mixing). Except possibly for the 3-yr cycle, the known sources of variability appear to operate ‘bottom-up’ through direct physical and chemical effects on the phytoplankton.

This is a preview of subscription content, log in to check access.


  1. Abbott, M. R., K. L. Denman, T. M. Powell, P. J. Richerson, R. C. Richards & C. R. Goldman, 1984. Mixing and the dynamics of the deep chlorophyll maximum in Lake Tahoe. Limnol. Oceanogr. 29: 862–878.

  2. American Public Health Association, 1985. Standard methods for the examination of water and wastewater. 16th edn. Amer. Pub. Health Ass., Washington, D.C., 1268 pp.

  3. Carpenter, S. R., 1988a. Transmission of variance through lake food webs. In S. R. Carpenter (ed.), Complex Interactions in Lake Communities. Springer-Verlag, New York: 119–135.

  4. Carpenter, S. R. (ed.), 1988b. Complex interactions in lake communities. Springer-Verlag, New York, 283 pp.

  5. Carpenter, S. R., 1990. Replication and treatment strength in whole-lake experiments. Ecology 70: 453–463.

  6. Carpenter, S. R. & P. R. Leavitt, 1991. Temporal variation in a paleolimnological record arising from a trophic cascade. Ecology 72: 277–285.

  7. Cattell, R. B., 1966. The scree test for the number of factors. Multivariate Behav. Res. 1: 245–276.

  8. Chatfield, C., 1990. The analysis of time series: an introduction. Chapman and Hall, London, 241 pp.

  9. Cleveland, W. S., 1979. Robust locally-weighted regression and smoothing scatterplots. J. Am. Statist. Assoc. 74: 829–836.

  10. Craddock, J. M., 1965. A meteorological application of principal component analysis. Statistician 15: 143–156.

  11. Elser, J. J., H. J. Carney & C. R. Goldman, 1990. The zooplankton-phytoplankton interface in lakes of contrasting trophic status: an experimental comparison. In: R. D. Gulati, E. H. R. R. Lammens, M.-L. Meijer & E. van Donk (eds), Biomanipulation — Tool for Water Management. Developments in Hydrobiology 61. Kluwer Academic Publishers, Dordrecht: 69–82. Reprinted from Hydrobiologia 200/201.

  12. Goldman, C. R., 1968. The use of absolute activity for eliminating serious errors in the measurement of primary productivity with 14C. J. Cons. perm. int. Explor. Mer 32: 172–179.

  13. Goldman, C. R. & E. de Amezaga, 1975. Spatial and temporal changes in primary productivity of Lake Tahoe, California-Nevada between 1959 and 1971. Verh. int. Ver. Limnol. 22: 591–599.

  14. Goldman, C. R., 1988. Primary productivity, nutrients, and transparency during the early onset of eutrophication in ultra-oligotrophic Lake Tahoe, California-Nevada. Limnol. Oceanogr. 33: 1321–1333.

  15. Goldman, C. R., A. Jassby & T. Powell, 1989. Interannual fluctuations in primary production: meteorological forcing at two subalpine lakes. Limnol. Oceanogr. 34: 308–321.

  16. Goldman, C. R. & A. D. Jassby, 1990. Spring mixing depth as a determinant of annual primary production in lakes. In M. W. Tilzer & C. Serruya (eds), Large Lakes: Ecological Structure and Function. Springer-Verlag, New York: 125–132.

  17. Goldman, C. R., A. D. Jassby & E. de Amezaga, 1990. Forest fires, atmospheric deposition and primary productivity at Lake Tahoe, California-Nevada. Verh. int. Ver. Limnol. 24: 499–503.

  18. Hipel, K. W., 1988. Nonparametric approaches to environmental impact assessment. Wat. Res. Bull. 24: 487–492.

  19. Jassby, A. D. & T. M. Powell, 1990. Detecting changes in ecological time series. Ecology 71: 2044–2052.

  20. Jassby, A. D., T. M. Powell & C. R. Goldman, 1990. Interannual fluctuations in primary production: direct physical effects and the trophic cascade at Castle Lake, California. Limnol. Oceanogr. 35: 1021–1038.

  21. Kamphake, L. J., S. A. Hannah & J. M. Cohen, 1967. Automated analysis for nitrate by hydrazine reduction. Wat. Res. 1: 205–216.

  22. Kitchell, J. F., R. V. O'Neill, D. Webb, G. W. Gallepp, S. M. Bartell, J. F. Koonce & B. S. Ausmus, 1979. Consumer regulation of nutrient cycling. BioScience 29: 28–34.

  23. Longhurst, A. R. & W. G. Harrison, 1988. Vertical nitrogen flux from the oceanic photic zone by diel migrant zooplankton and nekton. Deep-Sea Res. 35: 881–889.

  24. Marjanovic, P., 1989. Mathematical modeling of eutrophication processes in Lake Tahoe: water budget, nutrient budget and model development. Ph.D. dissertation. Univ. California, Davis, 385 pp.

  25. Morgan, M. D., 1980. Life history characteristics of two introduced populations of Mysis relicta. Ecology 61: 551–561.

  26. Paerl, H. W., R. C. Richards, R. L. Leonard & C. R. Goldman, 1975. Seasonal nitrate cycling as evidence for complete vertical mixing in Lake Tahoe, California-Nevada. Limnol. Oceanogr. 20: 1–8.

  27. Powell, T. & P. J. Richerson, 1985. Temporal variation, spatial heterogeneity, and competition for resources in plankton systems: a theoretical model. Am. Nat. 125: 413–464.

  28. Preisendorfer, R. W., 1988. Principal component analysis in meteorology and oceanography. Elsevier, New York, 425 pp.

  29. Richards, R., C. Goldman, E. Byron & C. Levitan, 1991. The mysids and lake trout of Lake Tahoe: a 25-year history of changes in the fertility, plankton, and fishery of an alpine lake. Am. Fish. Soc. Symp. 9: 30–38.

  30. Richman, M. B., 1986. Rotation of principal components. J. Climatol. 6: 293–335.

  31. Rybock, J. T., 1978. Mysis relicta Lovén in Lake Tahoe: vertical distribution and nocturnal predation. Ph.D. dissertation. Univ. California, Davis, 116 pp.

  32. Schindler, D. W., 1987. Detecting ecosystem responses to anthropogenic stress. Can. J. Fish. aquat. Sci. 44 (suppl.): 6–25.

  33. Shumway, R. H., 1988. Applied statistical time series analysis. Prentice Hall, Englewood Cliffs (N.J.), 379 pp.

  34. Smith, T. J. & B. P. Hayden, 1984. Snow goose migration phenology is related to extratropical storm climate. Int. J. Biometeor. 28: 225–233.

  35. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.

  36. Steemann Nielsen, E., 1952. The use of radioactive carbon (C14) for measuring organic production in the sea. J. Cons. perm. int. Explor. Mer 18: 117–140.

  37. Stockner, J. G. & N. J. Antia, 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can. J. Fish. aquat. Sci. 43: 2472–2503.

  38. Tilman, D., 1982. Resource competition and community structure. Princeton Univ. Press, Princeton (N.J.), 296 pp.

  39. Tilzer, M. M., H. W. Paerl & C. R. Goldman, 1977. Sustained viability of aphotic phytoplankton in Lake Tahoe (California-Nevada). Limnol. Oceanogr. 22: 84–91.

  40. Tukey, J., 1977. Exploratory data analysis. Addison-Wesley, Reading (Mass.), 688 pp.

  41. Wright, D. I. & J. Shapiro, 1984. Nutrient reduction in biomanipulation: an unexpected phenomenon and its possible cause. Verh. int. Ver. Limnol. 22: 518–524.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jassby, A.D., Goldman, C.R. & Powell, T.M. Trend, seasonality, cycle, and irregular fluctuations in primary productivity at Lake Tahoe, California-Nevada, USA. Hydrobiologia 246, 195–203 (1992).

Download citation

Key words

  • Lake Tahoe
  • primary productivity
  • long-term variability
  • time series
  • cycles