Advertisement

Hydrobiologia

, Volume 252, Issue 3, pp 211–230 | Cite as

Effects of wastewater treatment plant effluents on freshwater mollusks in the upper Clinch River, Virginia, USA

  • Stephanie E. Goudreau
  • Richard J. Neves
  • Robert J. Sheehan
Article

Abstract

Field and laboratory studies were conducted to determine mollusk distributions in proximity to waste-water treatment plants (WTP's) in the upper Clinch River and to test the tolerance of two mollusk species to monochloramine and unionized ammonia, the major toxicants in domestic effluent. River reaches up to 3.7 km downstream of WTP's were devoid of freshwater mussels (Unionidae), and tolerance to effluents varied among snails, sphaeriid clams, and the asian clam Corbicula fluminea. Residential communities with septic systems had no measurable impact on mollusk assemblages downstream.

Laboratory bioassays with glochidia of Villosa iris yielded the following results: 24 h EC50 and LC50 values of 0.042 mg l−1 and 0.084 mg l−1 monochloramine, respectively; and 24 h EC50 and LC50 of 0.237 mg l−1 and 0.284 mg l−1 unionized ammonia, respectively. Glochidia rank among the most sensitive invertebrates in their tolerance to these toxicants. The snail Pleurocera unciale unciale was moderately sensitive, with 96 h LC50 values of 0.252 mg l−1 monochloramine and 0.742 mg l−1 unionized ammonia. Monitoring of monochloramine and unionized ammonia concentrations 0.1 km below WTP outfalls indicated that monochloramine was the toxicant likely inhibiting mollusk recovery below these plants.

Key words

freshwater mollusks wastewater treatment plants mussels sewage chlorine ammonia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlstedt, S. E., 1979. Recent mollusk transplants into the North Fork Holston River in southwestern Virginia. Bull. Am. Malacol. Union 1979: 21–22.Google Scholar
  2. Ahlstedt, S. E., 1984. Twentieth century changes in the freshwater mussel fauna of the Clinch River (Tennessee and Virginia). M. S. thesis, Univ. Tenn., Knoxville, 102 pp.Google Scholar
  3. Allen, W. R., 1923. Studies of the biology of freshwater mussels part II: the nature and degree of response to certain physical and chemical stimuli. Ohio J. Sci. 23: 57–82.Google Scholar
  4. American Society for Testing and Materials (ASTM), 1980a. Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates, and amphibians. No. E 729-80. Philadelphia, Penn.Google Scholar
  5. American Society for Testing and Materials (ASTM), 1980b. Standard practice for conducting static acute toxicity tests with larvae of four species of bivalve molluscs. No. E 724-80.Google Scholar
  6. Arthur, J. W. & J. G. Eaton, 1971. Chloramine toxicity to the amphipod Gammarus pseudolimnaeus and the fathead minnow (Pimephales promelas). Fish. Res. Can. 28: 1841–1845.Google Scholar
  7. Arthur, J. W., R. W. Andrew, V. R. Mattson, D. T. Olson, G. E. Glass, B. J. Halligan & C. T. Walbridge, 1975. Comparative toxicity of sewage-effluent disinfection to freshwater aquatic life. EPA-600/3-75-012.Google Scholar
  8. Arthur, J. W., C. W. West, K. N. Allen & S. F. Hedtke, 1987. Seasonal toxicity of ammonia to five fish and nine invertebrate species. Bull. Envir. Contam. Toxicol. 38: 324–331.Google Scholar
  9. Baker, F. C., 1926. Changes in the bottom fauna of the Illinois River due to pollutional causes. Ecology 7: 229–230.Google Scholar
  10. Beck, W. M., Jr., 1954. Studies in stream biology, I: a simple ecological classification of organisms. Quart. J. Fla. Acad. Sci. 17: 211–227.Google Scholar
  11. Bellanca, M. A. & D. S. Bailey, 1977. Effects of chlorinated effluents on aquatic ecosystem in the lower James River. J. Wat. Pollut. Cont. Fed. 49: 639–645.Google Scholar
  12. Bliss, C. I., 1934. The calculation of the dosage-mortality curve. Ann. Appl. Biol. 22: 134–167.Google Scholar
  13. Blogoslawski, W. J., 1980. Use of chlorination in the molluscan shellfish industry. In R. L. Jolley, W. A. Brungs, R. B. Cumming (eds), Water chlorination: environmental impact and health effects, vol. 3. Ann. Arbor. Sci. Publ., Inc., Mich., 487–500.Google Scholar
  14. Brinley, F. J., 1943. Sewage, algae, and fish. Sew. Works J. 15: 78–83.Google Scholar
  15. Broderius, S. J., R. A. Drummond, J. T. Fiandt & C. L. Russom, 1985. Toxicity of ammonia to smallmouth bass, Micropterus dolomieui, as related to pH. Envir. Toxicol. Chem. 4: 87–96.Google Scholar
  16. Brooks, A. S. & J. M. Bartos, 1984. Effects of free and combined chlorine and exposure duration on rainbow trout, channel catfish, and emerald shiners. Trans. Am. Fish. Soc. 113: 786–793.Google Scholar
  17. Brooks, A. S. & D. C. Szmania, 1989. A comparison of continuous and intermittent exposures of four species of aquatic organisms to chlorine. Center for Great Lakes Studies and Dep. Biol. Sci., Univ. Wisc., Milwaukee, Wisc.Google Scholar
  18. Brungs, W. A., 1973. Effects of residual chlorine on aquatic life. J. Wat. Pollut. Cont. Fed. 45: 2180–2193.Google Scholar
  19. Brungs, W. A., 1976. Effects of wastewater and cooling water chlorination on aquatic life. EPA-600/3-76-098. 45 pp.Google Scholar
  20. Buikema, A. L. Jr., B. R. Niederlehner & J. Cairns, Jr., 1982. Biological monitoring, Part IV: toxicity testing. Wat. Res. 16: 239–262.Google Scholar
  21. Cairns, J., Jr. & D. S. Cherry, 1983. A site-specific field and laboratory evaluation of fish and Asiatic clam population responses to coal fired power plant discharges. Wat. Sci. Tech. 15: 31–58.Google Scholar
  22. Ellis, M. M., 1931. Some factors affecting the replacement of the commercial freshwater mussels. Bur. Fish., Fish. Circ. No. 7: 1–10.Google Scholar
  23. Emerson, K., R. C. Russo, R. E. Lund & R. V. Thurston, 1975. Aqueous ammonia equilibrium calculations: effect of pH and temperature. Fish. Res. Bd. Can. 32: 2379–2383.Google Scholar
  24. Epifanio, C. E. & R. F. Srna, 1975. Toxicity of ammonia, nitrite ion, and orthophosphate to Mercenaria mercenaria and Crassostrea virginica. Mar. Biol. 33: 241–246.Google Scholar
  25. Evans, J. W., 1979. The construction of a continuous-flow bioassay apparatus to determine a preliminary un-ionized ammonia 96 hour LC50 for the crayfish, Orconectes nais. M. S. thesis, Univ. Kans., Lawrence, 76 pp.Google Scholar
  26. Farris, J. L., J. H. Van Hassel, S. E. Belanger, D. S. Cherry & J. Cairns, Jr. 1988. Application of cellulolytic activity of Asiatic clams (Corbicula sp.) to in-stream monitoring of power plant effluents. Envir. Toxicol. Chem. 7: 703–713.Google Scholar
  27. Finney, D. J., 1971. Probit analysis. Cambridge Univ. Press, London, 333 pp.Google Scholar
  28. Fuller, S. L. H., 1974. Clams and mussels (Mollusca: Bivalvia), p. 215–273. In C. W. Hart, Jr. & S. L. H. Fuller (eds), Pollution ecology of freshwater invertebrates. Academic Press, New York.Google Scholar
  29. Fuller, S. L. H. & M. J. Imlay, 1976. Spatial competition between Corbicula manilensis (Philippi), the Chinese clam (Corbiculidae) and freshwater mussels (Unionidae) in the Waccamaw River Basin of the Carolinas. Ass. Southeast. Biol. Bull. 23: 60.Google Scholar
  30. Gardner, J. A., W. R. Woodall, Jr., A. A. Staats, Jr. & J. F. Napoli, 1976. The invasion of the asiatic clam in the Altamaha River, Georgia. Nautilus 90: 117–125.Google Scholar
  31. Gaufin, A. R. & C. M. Tarzwell, 1952. Aquatic invertebrates as indicators of stream pollution. Public Health Rep. 67: 57–62.Google Scholar
  32. Goodfellow, W. L. Jr., W. L. McCulloch, J. A. Botts, A. G. McDearmon & D. F. Bishop, 1989. Long-term multispecies toxicity and effluent fractionation study at a municipal wastewater treatment plant. In G. W. Suter II & M. A. Lewis (eds), Aquatic toxicology and environmental fate. ASTM STP 1007. Am. Soc. Test. Mater., Philadelphia, Penn.: 139–158.Google Scholar
  33. Goodrich, C., 1945. Goniobasis livescens of Michigan. Misc. Publ., Mus. Zool., No. 64, Univ. Mich., Ann Arbor, 36 pp.Google Scholar
  34. Gregg, B. C., 1974. The effects of chlorine and heat on selected stream invertebrates. Ph. D. dissertation, Va. Polytech. Inst. and State University, Blacksburg, 311 pp.Google Scholar
  35. Hansen, C. R., Jr. & J. A. Kawatski, 1976. Application of 24 hour postexposure observation to acute toxicity studies with invertebrates. J. Fish. Res. Bd. Can. 33: 1198–1201.Google Scholar
  36. Harman, W. N., 1974. Snails (Mollusca: Gastropoda). In C. W. Hart, Jr. & S. L. H. Fuller (eds), Pollution ecology of freshwater invertebrates. Academic Press, New York: 275–312.Google Scholar
  37. Havlik, M. E. & L. L. Marking, 1987. Effects of contaminants on naiad mollusks (Unionidae): a review. U. S. Fish. Wildl. Serv., Res. Publ. 164, 20 pp.Google Scholar
  38. Heath, A. G., 1977. Toxicity of intermittent chlorination to freshwater fish: influence of temperature and chlorine form. Hydrobiologia 56: 39–47.Google Scholar
  39. Horne, F. R. & S. McIntosh, 1979. Factors influencing distribution of mussels in the Blanco River of Central Texas. Nautilus 94: 119–133.Google Scholar
  40. Hubbs, C. L., 1933. Sewage treatment and fish life. Sew. Works J. 5: 1033–1044.Google Scholar
  41. Ingram, W. M., 1957. Use and value of biological indicators of pollution: freshwater clams and snails. In C. M. Tarzwell (ed.), Biological problems in water pollution. R. A. Taft Sanitary Eng. Cr., Cinncinati, Ohio: 94–135.Google Scholar
  42. Jenkinson, J. J., 1979. The occurrence and spread of Corbicula manilensis in East-Central Alabama. Nautilus 94: 149–153.Google Scholar
  43. Johnson, J. D., 1978. Measurement and persistence of chlorine residuals in natural waters. In R. L. Jolley (ed.), Water chlorination: environmental impact and health effects, Volume 1. Ann Arbor Sci. Publ., Inc., Mich., 3.63.Google Scholar
  44. Jolley, R. L. & J. H. Carpenter, 1983. A review of the chemistry and environmental fate of reactive oxidant species in chlorinated water. In R. L. Jolley, W. A. Brungs, J. A. Cotruvo, R. B. Cumming, J. S. Mattice, V. A. Jacobs (eds), Water chlorination: environmental impact and health effects, Volume 4. Ann Arbor Sci. Publ. Inc., Mich., 3–47.Google Scholar
  45. Khalanski, M. & F. Bordet, 1980. Effects of chlorination on marine mussels. In R. L. Jolley, W. A. Brungs, R. B. Cumming (eds), Water chlorination: environmental impact and health effects, Volume 3. Ann Arbor Sci. Publ. Inc., Mich., 557–567.Google Scholar
  46. Kitchel, H. E., 1985. Life history of the endangered shiny pigtoe pearly mussel, Fusconaia edgariana, in the North Fork Holston River, Virginia. M. S. thesis, Va. Polytech. Inst. State Univ., Blacksburg, 118 pp.Google Scholar
  47. Kovalak, W. P., S. D. Dennis & J. M. Bates, 1986. Sampling effort required to find rare species of freshwater mussels. In B. G. Isom (ed.), Rationale for sampling and interpretation of ecological data in the assessment of freshwater ecosystems. ASTM STP 894. Am. Soc. Test. Mater., Philadelphia, Penn., 34–35.Google Scholar
  48. Kraemer, L. R., 1979. Corbicula (Bivalvia: Sphaeriacae) vs indigenous mussels (Bivalvia: Unioniacea) in U. S. rivers: a hard case for interspecific competition? Am. Zool. 19: 1085–1096.Google Scholar
  49. Lewis, W. M., R. C. Heidinger, M. H. Paller & L. J. Wawionowicz, 1981. Effects of municipal sewage on fish communities in selected Illinois streams. In L. A. Krumholz (ed.), Warmwater Streams Symposium: 1980. South. Div. Am. Fish. Soc., Lawrence, Kans., 224–240.Google Scholar
  50. Maciorowski, H. D. & R. McV. Clarke, 1980. Advantages and disadvantages of using ivertebrates in toxicity testing. In A. L. Buikema, Jr. and J. Cairns, Jr. (eds), Aquatic invertebrate bioassays. ASTM STP 715. Am. Soc. Test. Mater. Philadelphia, Penn., 36–37.Google Scholar
  51. Mackenthum, K. M., 1966. Biological evaluation of polluted streams. J. Wat. Pollut. Contr. Fed. 38: 241–247.Google Scholar
  52. Mason, W. T., P. A. Lewis & J. B. Anderson, 1968. Macroinvertebrate collections and water quality monitoring in the Ohio River Basin 1963–1967. Coop. Rep., Off. Tech. Programs, Ohio Basin Regions and Anal. Qual. Contr. Lab., Water Quality Office.Google Scholar
  53. Mason, W. T., Jr., J. B. Anderson, R. D. Kreis & W. C. Johnson, 1970. Artificial substrate sampling, macroinvertebrates in a polluted reach of the Klamath River, Oregon. J. Wat. Pollut. Contr. Fed. 42: R315–R328.Google Scholar
  54. Mattice, J. S. & S. C. Tsai, 1983. Total residual chlorine as a regulatory tool. In R. L. Jolley, W. A. Brungs, J. A. Cotruvo, R. B. Cumming, J. S. Mattice, V. A. Jacobs (eds), Water chlorination: environmental impact and health effects, Volume 4. Ann Arbor Sci. Publ., Inc., Michigan., 901–912.Google Scholar
  55. Miller, D. C., S. Poucher, J. A. Cardin & D. Hansen, 1990. The acute and chronic toxicity of ammonia to marine fish and a mysid. Arch. Envir. Contam. Toxicol. 19: 40–48.Google Scholar
  56. Miller, R. G., Jr., 1966. Simultaneous statistical inference. McGraw-Hill Book Co., New York. 272 pp.Google Scholar
  57. Morrison, D. J., 1976. Multivariate statistical methods. McGraw-Hill Book Co., New York. 338 pp.Google Scholar
  58. Ortmann, A. E., 1909. The destruction of the freshwater fauna in western Pennsylvania. Proc. Am. Philos. Soc. 48: 90–110.Google Scholar
  59. Ortmann, A. E., 1918. The nayades (freshwater mussels) of the upper Tennessee drainage, with notes on synonymy and distribution. Proc. Am. Philos. Soc. 57: 521–626.Google Scholar
  60. Paller, M. H., W. M. Lewis, R. C. Heidinger & L. J. Wawronowicz, 1983. Effects of ammonia and chlorine on fish in streams receiving secondary discharges. J. Wat. Pollut. Contr. Fed. 55: 1087–1097.Google Scholar
  61. Roberts, M. H., Jr., 1980. Flow-through toxicity testing system for molluscan larvae as applied to halogen toxicity in estuarine water. In A. L. Buikema, Jr. & J. Cairns, Jr. (eds), Aquatic invertebrate bioassays. ASTM STP 715. Am. Soc. Test. Mater., Philadelphia, Penn.Google Scholar
  62. Roberts, M. H. & B. B. Casey, 1985. Depression of larval growth and metamorphosis of oysters exposed to chlorinated sewage. In R. L. Jolley, R. J. Bull, W. P. Davis, S. Katz, M. H. Roberts, Jr., V. A. Jacobs (eds), Water chlorination: environmental impact and health effects, Volume 5. Ann Arbor Sci. Publ., Inc., Mich., 509–520.Google Scholar
  63. Roberts, M. H., Jr. & R. A. Gleeson, 1978. Acute toxicity of bromochlorinated seawater to selected estuarine species with a comparison to chlorinated seawater toxicity. Mar. Envir. Res. 1: 19–30.Google Scholar
  64. Rosenberg, G. D. & M. T. Henschen, 1986. Sediment particles as a cause of nacre staining in the freshwater mussel, Amblema plicata (Say)(Bivalvia: Unionidae). Hydrobiologia 135: 167–178.Google Scholar
  65. Russo, R. C., A. Pilli & E. L. Meyn, 1985. Memorandum to N. A. Jaworski, 4 March 1985.Google Scholar
  66. Sheehan, R. J. & W. M. Lewis, 1986. Influence of pH and ammonia salts on ammonia toxicity and water balance in young channel catfish. Trans. Am. Fish. Soc. 115: 891–899.Google Scholar
  67. Sheehan, R. J., R. J. Neves & H. E. Kitchel, 1989. Fate of freshwater mussels transplanted to formerly polluted reaches of the Clinch and North Fork Holston rivers, Virginia. J. Freshwat. Ecol. 5: 139–149.Google Scholar
  68. Sickel, J. B., 1976. An ecological study of the Asiatic clam, Corbicula manilesis (Philippi, 1884), in the Atamaha River, Georgia, with emphasis on population dynamics, productivity and control methods. Ph. D. dissertation, Emory Univ., Atlanta, Ga., 126 pp.Google Scholar
  69. Simmons, G. M., Jr. & J. R. Reed, Jr., 1973. Mussels as indicators of biological recovery zone. J. Wat. Pollut. Cont. Fed. 45: 2480–2492.Google Scholar
  70. Sinclair, R. M., 1969. The pleurocerid fauna of the Tennessee River. Bull. Am. Malacol. Union 36: 45–47.Google Scholar
  71. Stansbery, D. H., 1970. Eastern freshwater mollusks (I): the Mississippi and St. Lawrence River Systems. Malacologia 10: 9–21.Google Scholar
  72. Stansbery, D. H. & C. B. Stein, 1976. Changes in the distribution of Io fluvialis (Say, 1825) in the Upper Tennessee River System (Mollusca: Gastropoda: Pleuroceridae). Bull. Am. Malacol. Union 1976: 28–33.Google Scholar
  73. Stansbery, D. H., C. B. Stein & G. T. Watters, 1986. The distribution and relative abundance of unionid mollusks in the Clinch River in the vicinity of Appalachian Power Company's Clinch River Plant at Carbo, Virginia (Clinch River miles 264–270). Ohio State Univ. Res. Found., Proj. 764801/717333. Columbus, Oh, 184 pp.Google Scholar
  74. SAS Institute, 1985. SAS user's guide: statistics. Stat. Anal. Syst. Inst., Cary, N. C. 956 pp.Google Scholar
  75. Stein, C. B., 1971. Naiad life cycles: their significance in the conservation of the fauna. In Jorgensen & Sharp (eds), Proceedings of a symposium on rare and endangered mollusks (naiads) of the United States. U. S. Dep. Interior, Fish Wildl. Serv. Bur. Sport Fish. Wildl.: 19–25.Google Scholar
  76. Stephan, C. E., 1977. Methods for calculating an LC50. In F. L. Mayer & J. L. Hamelink (eds), Aquatic toxicology and hazard evaluation. ASTM STP 634. Am. Soc. Test. Mater., Philadelphia, Penn.: 65–84.Google Scholar
  77. Tarzwell, C. M. & A. R. Gaufin, 1953. Some important ecological effects of pollution often disregarded in stream surveys. Purdue Univ. Eng. Bull., Proc. 8th Industr. Waste Conf. 1953: 295–316.Google Scholar
  78. Thomas, P., J. M. Bartos & A. S. Brooks, 1980. Comparison of the toxicities of monochloramine and dichloramine to rainbow trout, Salmo gairdneri under various times conditions. In R. L. Jolley, W. A. Brungs, R. B. Cumming (eds), Water chlorination: environmental impact and health effects, Volume 3. Ann Arbor Sci. Publ., Inc., Mich., 581–588.Google Scholar
  79. Thurston, R. V., R. C. Russo & G. A. Vinogradov, 1981. Ammonia toxicity to fishes: effect of pH on the toxicity of the un-ionized ammonia species. Envir. Sci. Tech. 15: 837–840.Google Scholar
  80. Thurston, R. V., R. J. Luedtke & R. C. Russo, 1984. Toxicity of ammonia to freshwater insects of three families. Fish. Bioassay Lab., Montana State Univ., Bozeman. Tech. Rep. 84-2. 26 pp.Google Scholar
  81. Tsai, C. F., 1973. Water quality and fish life below sewage outfalls. Trans. Am. Fish. Soc. 102: 281–292.Google Scholar
  82. Tsai, C. F., 1975. Effects of sewage treatment plant effluents on fish: a review of literature. Chesapeake Research Consortium Inc. Publication No. 36. CTR. Envir. Estuar. Studies, Univ. Md., Solomons, Md.Google Scholar
  83. U. S. Environmental Protection Agency, 1985a. Ambient water quality criteria for chlorine-1984. Report PB85-227429, Nat. Tech. Info. Serv., Springfield, Va. 57 pp.Google Scholar
  84. U. S. Environmental Protection Agency, 1985b. Ambient water quality criteria for ammonia-1984. Report PB85-227114, Nat. Tech. Info. Serv., Springfield, Va. 217 pp.Google Scholar
  85. van der Schalie, H., 1938. Contributing factors in the depletion of naiades in Eastern United States. Basteria 3: 51–57.Google Scholar
  86. Varanka, I., 1977. The effect of some pesticides on the rhythmic activity of adductor muscle of freshwater mussel larvae. Acta Biol. 28: 317–332.Google Scholar
  87. Varanka, I., 1978. Effect of some pesticides on the rhythmic adductor muscle activity of freshwater mussel larvae. Acta Biol. 29: 43–55.Google Scholar
  88. Varanka, I., 1979. Effect of some pesticides on the rhythmic adductor muscle activity of freshwater mussel larvae. In J. Salanki & P. Biro (eds), Human impacts on life in fresh waters. Symp. Biol. Hungarica, Volume 19. Akademial Kiado, Budapest, 177–196.Google Scholar
  89. Waller, D. L., L. E. Holland, L. G. Mitchell & T. W. Kammer, 1985. Artificial infestation of largemouth bass and walleye with glochidia of Lampsilis ventricosa (Pelecypoda: Unionidae). Freshwat. Invert. Biol. 4: 152–153.Google Scholar
  90. Ward, R. W., R. D. Griffin, G. M. DeGraeve & R. A. Stone, 1976. Disinfection efficiency and residual toxicity of several wastewater disinfectants, Volume 1. EPA-600/2-76-156. Nat. Tech. Info. Serv., Springfield, Va. 131 pp.Google Scholar
  91. Weber, C. I., 1981. Evaluation of the effects of effluents on aquatic life in receiving waters: an overview. In J. M. Bates & C. I. Weber (eds), Ecological assessment of effluent impacts on communities of indigenous aquatic organisms. ASTM STP 730. Am. Soc. Test. Mater., Philadelphia, Pa.: 3–13.Google Scholar
  92. West, C. W., 1985. Acute toxicity of ammonia to 14 freshwater species. Internal report. U. S. Environ. Prot. Agency, Environ. Res. Lab., Duluth, Minn.Google Scholar
  93. Wetzel, R. G., 1975. Limnology. W. B. Saunders. Co., Philadelphia, Penn., 743 pp.Google Scholar
  94. White, G. C., 1986. Handbook of chlorination. Van Nostrand Reinhold Co., New York, 1070 pp.Google Scholar
  95. Wollitz, R. E., 1985. Status report on the biology of the Clinch and Powell Rivers, in Virginia. Va. Comm. Game Inland Fish., Mimeo Rep. 10 pp.Google Scholar
  96. Wurtz, C. B., 1956. Freshwater mollusks and stream pollution. Nautilus 69: 96–100.Google Scholar
  97. Zale, A. V. & R. J. Neves, 1982a. Fish hosts of four species of lampsiline mussels (Mollusca: Unionidae) in Big Moccasin Creek, Virginia. Can. J. Zool. 60: 2535–2542.Google Scholar
  98. Zale, A. V. & R. J. Neves, 1982b. Reproductive biology of four freshwater mussel species (Mollusca: Unionidae) in Virginia. Freshwat. Invert. Biol. 1: 17–28.Google Scholar
  99. Zillich, J. A., 1972. Toxicity of combined chlorine residuals to freshwater fish. J. Wat. Pollut. Cont. Fed. 44: 212–220.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Stephanie E. Goudreau
    • 2
  • Richard J. Neves
    • 1
  • Robert J. Sheehan
    • 3
  1. 1.Virginia Cooperative Fish and Wildlife Research Unit, U.S. Fish and Wildlife Service, Department of Fisheries and Wildlife SciencesVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.North Carolina Wildlife Resources CommissionMarionUSA
  3. 3.Fisheries Research Laboratory and Department of ZoologySouthern Illinois UniversityCarbondaleUSA

Personalised recommendations