Environmental Biology of Fishes

, Volume 2, Issue 2, pp 147–176 | Cite as

Early ontogeny of Labeotropbeus Ahl, 1927 (Mbuna, Cichlidae, Lake Malawi), with a discussion on advanced protective styles in fish reproduction and development

  • Eugene K. Balon


With yolk as a food source, development of Labeotropheus takes place in the buccal pouch of the female until such time as juveniles are formed. Hatching from the vitelline membrane occurs early, after 6 days of incubation, and the eleutheroembryo develops without metamorphic stages directly into a juvenile, forming advanced structures like fins, skeleton and pigments, at a time when a large yolksac is still present. A strong circulatory network on the yolk and anal fin fold, and a yellow carotenoid pigment provide the oxygen supply within the closely packed buccal pouch. A relatively large self-sufficient juvenile, 14% of the adult fish size, is released from the mother's mouth 31 days after fertilization. The evolution of advanced hiding styles in reproductive guilds of fishes is discussed and ends with a speculation that the Latimeria, having had more geological time to refine its hiding style, releases fully developed young, 25 to 30% the size of the adult fish. The advanced style of hiding eggs is accompanied not only with fewer, larger eggs, but also by a successive increase in yolk density in terms of nutrients and respiratory pigments; these in effect determine the size of the released juvenile.


Embryology Development Embryonic respiration Carotenoids in respiration Evolution Egg hiding Mouth brooder Young size Cichlids Mouth fertilization Size on release Latimeria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Amoroso, E.C. 1960. Viviparity in fishes. Symp. Zool. Soc. Lond. 1: 153–181.Google Scholar
  2. Andrews, S.M. 1973. Interrelationships of crossopterygians. pp. 137–177. In: P.H. Greenwood, R.S. Miles & C. Patterson (ed.), Interrelationships of fishes. Academic Press, London.Google Scholar
  3. Anthony, J. & J. Millot. 1972. Première capture d'une femelle de Coelacanthe en état de maturité sexuelle. C.R. Acad. Sci. Paris 224: 1925–1926.Google Scholar
  4. Armstrong, R.A. & M.E. Gilpin. 1977. Evolution in a timevarying environment. Science 195: 591–592.Google Scholar
  5. Arndt, E.A. 1960. Untersuchungen über die Eihüllen von Cypriniden. Z. Zellforschung 52: 315–327.Google Scholar
  6. Arnold, M., K. Kriesten & H.M. Peters. 1968. Die Haftorgane von Tilapia-Larven (Cichlidae, Teleostei). Histochemische und elektronenmikroskopische Untersuchungen. Z. Zellforsch. mikrosk. Anat. 91: 248–260.Google Scholar
  7. Avni, A.A. & S.G. Soin. 1974. Adaptive peculiarities of Nothobranchius quentheri (Pfeffer) embryogenesis in connection with life in periodically drying out tropical waters. Voprosy ichtiologii 14: 846–858 (in Russian).Google Scholar
  8. Axelrod, H.R. 1974. African cichlids of Lake Malawi and Tanganyika. Second Edition. T.F.H. Publications, Inc., Neptune City. 256 pp.Google Scholar
  9. Axelrod, H.R. & L. Burgess. 1973. Breeding aquarium fishes, Book 3. T.F.H. Publications, Inc., Neptune City. 320 pp.Google Scholar
  10. Bachop, W.E. & F.J. Schwartz. 1974. Quantitative nucleic acid histochemistry of the yolk sac syncytium of oviparous teleosts: implications for hypotheses of yolk utilization. pp. 345–353. In: J. H. S. Blaxter (ed.), The Early Life History of Fish. Springer-Verlag, Berlin.Google Scholar
  11. Balinsky, B.I. 1970. An introduction to embryology. W. B. Saunders Co., Philadelphia. 725 pp.Google Scholar
  12. Balon, E. K. 1959a. Die Entwicklung der Texas-Cichlide (Herichthys cyanoguttatus Baird et Girard) nach dem Schlüpfen. Zool. Anzeiger 162: 339–355.Google Scholar
  13. Balon, E.K. 1959b. Die Beschuppungsentwicklung der Texas-Cichlide (Herichthys cyanoguttatus Baird et Girard). Zool. Anzeiger 163: 82–89.Google Scholar
  14. Balon, E.K. 1962. Note on the number of Danubian bitterlings' developmental stages in mussels. Věst. Čs. spol. zool. 26: 250–256.Google Scholar
  15. Balon, E.K. 1968. Notes to the origin and evolution of trouts and salmons with special reference to the Danubian trouts. Věst. Čs. spol. zool. 32: 1–21.Google Scholar
  16. Balon, E.K. 1971. The intervals of early fish development and their terminology (A review and proposals). Věst. Čs. spol. zool. 35: 1–8.Google Scholar
  17. Balon, E.K. 1975a. Reproductive guilds of fishes: a proposal and definition. J. Fish. Res. Board Can. 32: 821–864.Google Scholar
  18. Balon, E.K. 1975b. Ecological guilds of fishes: a short summary of the concept and its application. Verh. Internat. Verein. Limnol. 19: 2430–2439.Google Scholar
  19. Balon, E.K. 1975c. Terminology of intervals in fish development. J. Fish. Res. Board Can. 32: 1663–1670.Google Scholar
  20. Balon, E.K. 1976. A note concerning Dr. Richard's comments. J. Fish. Res. Board Can. 33: 1254–1256.Google Scholar
  21. Balon, E.K. & S. Frank. 1953. Breeding and the postembryonic development of Aequidens latifrons. iva 1: 68–72 (in Czech).Google Scholar
  22. Balon, E.K., W.T. Momot & H.A. Regier. 1977. Reproduction guilds of percids: results of the paleogeographical history and ecological succession. J. Fish. Res. Board Can. 34: in print.Google Scholar
  23. Berg, L.S. 1940. Classification of fishes, both recent and fossil. Trav. Inst. Zool. Acad. Sci. U.S.S.R., vol. 5, No. 2, 517 pp. (Russian and English texts. Also reprint, Ann Arbor Michigan, 1947).Google Scholar
  24. Blaxter, J.H.S. 1969. Development:eggs and larvae. pp. 177–252. In: W.S. Hoar & D.J. Randall (ed.), Fish Physiology. Academic Press, New York.Google Scholar
  25. Breder, C. M. Jr. 1943. The eggs of Bathygobius soporator (Cuvier and Valenciennes) with a discussion of other nonspherical teleost eggs. Bull. Bingh. Ocean. Coll. 8: 1–49.Google Scholar
  26. Ching, R. 1976. Artificial hatching of mouth-brooding cichlid eggs ... A boom to commercial and semi-commercial cichlid producers. Trop. Fish. Hobbyist 25 (249): 36–41.Google Scholar
  27. Cichocki, F. 1977. Tidal cycling and parental behavior of the cichlid fish, Biotodoma cupido. Env. Biol. Fish. 1: 159–169.Google Scholar
  28. Devys, M., S. Thierry, M. Barbier & M.M. Janot. 1972. Premières observations sur les lipides de l'ovocyte du Coelacanthe (Latimeria chalumnae). C.R. Acad. Sc. Paris 275 (Ser. D): 2085–2087.Google Scholar
  29. Dmitriyeva, E. N. 1968. Morpho-ecological analysis of development of the goby, Neogobius fluviatilis (Pallas) during the embryonic period of development. pp. 90–113. Morpho-ecological studies of fish development. Izd. Nauka, Moskva (in Russian).Google Scholar
  30. Fishelson, L. 1966a. Untersuchungen zur vergleichenden Entwicklungsgeschichte der Gattung Tilapia (Cichlidae, Teleostei), Zool. Jb. Anat. 83: 571–656.Google Scholar
  31. Fishelson, L. 1966b. Cichlidae of the genus Tilapia in Israel. Bamidgeh 18: 67–80.Google Scholar
  32. Fishelson, L. 1976. Spawning and larval development of the blennid fish, Meiacanthus nigrolineatus from the Red Sea. Copeia 1976: 798–800.Google Scholar
  33. Folch, J., M. Lees & C.H.S. Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497–509.Google Scholar
  34. Fryer, G. 1956. A new species of Labeotropheus from Lake Nyasa, with a redescription of Labeotropheus Fuellebomi Ahl, and some notes on the genus Labeotropheus. Rev. Zool. Bot. Afr. 54: 280–289.Google Scholar
  35. Fryer, G. 1959. The trophic interrelationships and ecology of some littoral communities of Lake Nyasa with especial reference to the fishes, and a discussion of the evolution of a group of rock-frequenting Cichlidae. Proc. Zool. Soc. London 132: 153–281.Google Scholar
  36. Fryer, G. & T.D. Iles. 1969. Alternative routes to evolutionary success as exhibited by African cichlid fishes of the genus Tilapia and the species flocks of the Great Lakes. Evolution 23: 359–369.Google Scholar
  37. Fryer, G. & T.D. Iles. 1972. The cichlid fishes of the Great Lakes of Africa. T.F.H. Publications, Neptune City. 641 pp.Google Scholar
  38. Galat, D.L. 1972. Preparing teleost embryos for study. Prog. Fish-Cult. 34: 43–48.Google Scholar
  39. Ginzburg, A.S. 1968. Fertilization in fishes and the problem of polyspermy. Nauka Press, Moskva (in Russian, English translation published by the Israel Program for Scientific Translations 1972).Google Scholar
  40. Gosline, W.A. 1971. Functional morphology and classification of Teleostean fishes. The Univ. Press of Hawai, Honolulu. 208 pp.Google Scholar
  41. Grodziński, Z. 1968. The yolk of holostean fishes. Acta Biologica Cracoviensia 11: 315–323.Google Scholar
  42. Hoar, W.S. 1969. Reproduction. pp. 1–72. In: W. S. Hoar & D.J. Randall (ed.), Fish Physiology. academic Press, New York.Google Scholar
  43. Hopson, A.J. 1969. A description of the pelagic embryos and larval stages of Lakes niloticus (L.) (Pisces: Centropomidae) from Lake Chad, with a review of early development in lower percoid fishes. Zool. J. Linn. Soc. 48: 117–134.Google Scholar
  44. Hubbs, C.L. 1926. The structural consequences of modifications of the developmental rate in fishes, considered in reference to certain problems of evolution. Am. Nat. 60: 57–81.Google Scholar
  45. Hubbs, C.L. & K. Kuronuma. 1943. Egg and ovipositor character in two Acheilognathine fishes from Japan. Copeia 1943: 183–186.Google Scholar
  46. Ignatyeva, G.M. 1974. Relative durations of corresponding periods of early embryogenesis in teleosts. SJDBA9 (Ontogenez) 5: 379–386.Google Scholar
  47. Ivankov, V.N. & V.P. Kurdyayeva. 1973. Systematic differences and the ecological importance of the membranes in fish eggs, J. Ichthyology (AFS) 13: 864–873.Google Scholar
  48. Jackson, P.B.N. 1975. How it started. The mbuna at home. What mbuna are. pp. 5–66. In: P.B.N. Jackson & T. Ribbinck, Mbuna, rock-dwelling cichlids of Lake Malawi, Africa. T.F.H. Publications, Inc., Neptune City.Google Scholar
  49. Jackson, P.B.N. & T. Ribbinck. 1975. Mbuna (rock-dwelling cichlids of Lake Malawi, Africa). T.F.H. Publications, Inc., Neptune City. 128 pp.Google Scholar
  50. Kaj, J. & K. Lewicka. 1962. The influence of the size of spawn in ovaries of Salmo trutta L. on the embryonic and postembryonic development. Roczniki Wyzszej Szkoly Rolniczej w Poznaniu 12: 55–68 (in Polish).Google Scholar
  51. Koestler, A. 1964. The eureka process. Horizon 6: 16–25.Google Scholar
  52. Kostomarova, A.A. 1962. Influence of hunger on the development of teleostean fish larvae. Trudy Inst. Morph. Zhiv. Severcova 40: 4–77 (in Russian).Google Scholar
  53. Kryzhanovsky, S.G. 1940. On the significance of the size of the yolk sac surface in teleostean eggs for organogenesis. Zool. Zh. 19: 456–470 (in Russian).Google Scholar
  54. Kryzhanovsky, S.G. 1949. Eco-morphological principles of development of carps, loaches and catfishes. Trudy Inst. Morph. Zhiv. Severcova 1: 5–332 (in Russian).Google Scholar
  55. Kryzhanovsky, S.G., N.N. Disler & E.N. Smirnova. 1953. Eco-morphological principles of development in periods. Trudy Inst. Morph. Zhiv. Severcova 10: 3–138 (in Russian).Google Scholar
  56. Kunz, Y. 1964. Morphologische Studien über die embryonale und postembryonale Entwicklung bei Teleostiern mit besonderer Berücksichtgung des Dottersystems und der Leber. Ann. Soc. Suisse de Zool. 71: 445–525.Google Scholar
  57. Lanzing, W.J.R. 1976. A temporary respiratory organ in the tail of Tilapia mossambica fry. Copeia 1976: 800–802.Google Scholar
  58. Lönning, S. & P. Solemdal. 1972. The relation between thickness of chorion and specific gravity of eggs from Norwegian and Baltic flatfish populations. FiskDir. Skr. Ser. HavUnders. 16: 77–88.Google Scholar
  59. MacArthur, R.H. & E.O. Wilson. 1967. The theory of island biogeography. Princeton Univ. Press, Princeton, N.J. 203 pp.Google Scholar
  60. Manner, H.W. & C. Muehleman. 1976. LAS inhibition of diffusion and uptake of tritiated uridine during teleost cmbryogenesis. Env. Biol. Fish. 1: 81–84.Google Scholar
  61. Manner, H.W., M. VanCura & C. Muehleman. 1977. The ultrastructure of the chorion of the fathead minnow, Pimephales promelas. Trans. Am. Fish. Soc. 106: 110–114.Google Scholar
  62. Marshall, N.B. 1953. Egg size in Arctic, Antarctic and deepsea fishes. Evolution 7: 328–341.Google Scholar
  63. Mayr, E. 1954. Change of genetic environment and evolution. pp. 157–180. In: J. Huxley, A. C. Hardy & E. B. Ford (ed.), Evolution as a process. Allen & Unwin, London.Google Scholar
  64. Mayr, E. 1976. Evolution and the diversity of fife: selected essays. The Belknap Press of Harvard Univ. Press, Cambridge, Mass. 721 pp.Google Scholar
  65. McEwen, R.S. 1930. The early development of Haemichromis bimaculata, with special reference to factors determining the embryonic axis. J. Morph. Phys. 49: 579–619.Google Scholar
  66. McEwen, R.S. 1940. The early development of the swimbladder and certain adjacent parts in Hemichromis bimaculatus. J. Morph. Phys. 67: 1–40.Google Scholar
  67. Millot, J. & J. Anthony. 1974. Les oeufs du Coelacanthe. Science et Nature 121: 3–4 (+ color cover photograph).Google Scholar
  68. Moskalkova, K.I. 1967. Morpho-ecological principles of development of the goby Neogobius melanostomus (Pall.). pp. 48–75. Morpho-ekologitchesky analiz razvitya ryb. Izd. Nauka, Moskva (in Russian).Google Scholar
  69. Needham, J. 1931. Chemical embryology. Cambridge Univ. Press, Cambridge.Google Scholar
  70. Peters, R.H. 1976. Tautology in evolution and ecology. Amer. Natur. 110: 1–12.Google Scholar
  71. Peters, R.H. 1977. The unpredictable problems of trophodynamics. Env. Biol. Fish. 2: 97–101.Google Scholar
  72. Pianka, E.R. 1970. On r- and K-selection. Amer. Nat. 104: 592–597.Google Scholar
  73. Reznitchenko, P.N., L.G. Solovyev & M.V. Gulidov. 1968. On the process of oxygen penetration to the respiratory surface of fish embryos. pp. 120–135. Morpho-ecological studies of fish development. Izd. Nauka, Moskva (in Russian).Google Scholar
  74. Root, R.B. 1975. Some consequences of ecosystem texture. pp. 83–97. In: S.A. Levin (ed.), Ecosystem analysis and prediction. Soc. Ind. Appl. Math., Philadelphia.Google Scholar
  75. Root, R.B. & S. J. Chaplin. 1976. The life-styles of tropical milkweed bugs, Oncopeltus (Hemiptera: Lygacidae) utilizing the same hosts. Ecology 57: 132–140.Google Scholar
  76. Shaw, E. S. & L. R. Aronson. 1954. Oral incubation in Tilapia macrocephala. Bull. Amer. Mus. Nat. Hist. 103: 379–415.Google Scholar
  77. Shaw, B.L. & H.I. Battle. 1957. The gross and microscopic anatomy of the digestive tract of the oyster Grassostsea virginica (Gmelin). Can. J. Zool. 35: 325–347.Google Scholar
  78. Shrode, J.B. 1975. Developmental temperature tolerance of a Death Valley pupfish (Cyprinodon nevadensis). Phys. Zool. 48: 378–389.Google Scholar
  79. Smirnov, A.I. 1950. Significance of the carotenoid pigmentation in embryo-larval stages of cyprinid fishes (Pisces, Cyprinidae). Dokl. AN SSSR 73: 609–612 (in Russian).Google Scholar
  80. Smirnov, A.I. 1975. Biology, reproduction and development of Pacific salmon. Izd., Moskovskogo Univ., Moskva. 335 pp. (in Russian).Google Scholar
  81. Smith, C.L., C.S. Rand, B. Schaeffer & J.W. Atz. 1975. Latimeria, the living Coelacanth, is ovoviviparous. Science 190: 1105–1106.Google Scholar
  82. Soin, S.G. 1956. On the respiratory significance of carotenoid pigment in salmonid fish eggs and in other representatives of the order Clupeiformes. Zool. Zh. 35: 1362–1369 (in Russian).Google Scholar
  83. Sterba, G. 1958. Die Eihüllen des Schmerlen-Eies (Nemachilus barbatula L.). Z. Mikroskopisch-Anatomische Forschung 63: 581–588.Google Scholar
  84. Szubińska-Kilarska, B. 1959. The morphology of the yolk in certain Salmonidae. Acta Biologica Cracoviensia 2: 97–112.Google Scholar
  85. Travolga, W.N. 1950. Development of the gobiid fish, Bathygobius soporator. J. Morph. (Philadelphia) 87: 467–492.Google Scholar
  86. Taylor, W.R. 1967. An enzyme method of clearing and staining small vertebrates. Proc. U.S. Nat. Mus. 122: 1–17.Google Scholar
  87. Tyong, F.M. 1970. Features of maturation of eggs in the oral cavity in Tilapia mossambica Peters and a method for artificially incubating them. Doklady Akad. Nauk SSSR 191: 734–736 (in Russian).Google Scholar
  88. Valenti, R.J. 1972. The embryology of the neon goby. Gobiosoma oceanops. Copeia 1972: 477–482.Google Scholar
  89. Welcomme, R.L. 1967. The relationship between fecundity and fertility in the mouth-brooding cichlid fish, T. leucosticta. J. Zool., Lond. 158: 453–468.Google Scholar
  90. Welcomme, R.L. 1969. The biology and ecology of the fishes of a small tropical stream. J. Zool., Lond. 158: 485–529.Google Scholar
  91. Yamamoto, M. 1963. Electron microscopy of fish development. I. Fine structure of the hatching glands of embryos of the teleost, Oryzias latipes. J. Tokyo Univ. Fac. Sc. 10: 115–127.Google Scholar
  92. Yamamoto, M. 1975. Hatching gland and hatching enzyme. pp. 73–79. In: T. Yamamoto apan.Google Scholar
  93. Yamamoto, T. 1975. Medaka (Killifish) biology and strains. Keigaku Publishing Company, Tokyo, Japan. 365 pp.Google Scholar
  94. Cohen, J. 1967. Living embryos: an introduction to the study of animal development. Pergamon Press, Oxford. 156 pp.Google Scholar
  95. Jones, A.J. 1972. The early development of substrate-brooding cichlids (Teleostei: Cichlidae) with a discussion of a new system of staging. J. Morph. 136: 255–272.Google Scholar
  96. Richards, W.J. 1976. Some comments on Balon's terminology of fish development intervals. J. Fish. Res. Board Can. 33: 1253–1254.Google Scholar
  97. Witschi, E. 1953. Proposals for an international agreement on normal stages in vertebrate embryology. Proc. XIVth Int. Congress Zool. (Copenhagen): 260–262.Google Scholar
  98. Witschi, E. 1953. Proposals for an international agreement on normal stages in vertebrate embryology. Proc. XIVth Int. Congress Zool. (Copenhagen): 260–262.Google Scholar

Copyright information

© Dr. W. Junk bv Publishers 1977

Authors and Affiliations

  • Eugene K. Balon
    • 1
  1. 1.Department of Zoology, College of Biological ScienceUniversity of GuelphGuelphCanada

Personalised recommendations