Environmental Biology of Fishes

, Volume 29, Issue 2, pp 81–93 | Cite as

The evolution of sex-change mechanisms in fishes

  • Robert M. Ross


Five distinct sex-change mechanisms are identified among sequentially hermaphroditic fishes based on socio-ecological characteristics. The primary determinants of the sex-change mechanisms appear to be social organization and mating system, which in turn depend on resource distribution in space and time. The ability of a single individual to control all mating in the social unit, which is related to the size of the social unit, differentiates three suppression mechanisms from two induction mechanisms. Sex-change suppression, which is characteristic of species with small group size and rigid dominance hierarchies, refers to inevitable sex change in the absence of group dominance. Ability to migrate between resource patches differentiates protogynous suppression (e.g. inLabroides dimidiatus) from protandrous suppression (e.g. inAmphiprion spp.). Early sex change appears to have evolved from protogynous suppression under special conditions involving the loss of mating control by a single dominant individual in certain species (e.g.Centropyge spp. ). Sex-change induction, which is characteristic of species with large social groups lacking rigid dominance hierarchies, refers to the requirement that sex change must be induced by specific characteristics of (or changes in) the social group, regardless of dominance status. Ability to distinguish sex, or its importance, differentiates sex-ratio induction (e.g.Anthias squamipinnis) from size-ratio induction (e.g.Thalassoma spp.). Alternative models account for the possibility that all cases of sex change require stimulation from smaller conspecifics (universal induction-inhibition model) or that all fish have the genetic capacity to switch mechanisms, depending on changing ecological conditions and resulting changes in mating system (behavioral-scaling model). Neurophysiological models suggest that induction mechanisms, which require at least two categories of environmental stimuli, may have evolved from the simpler suppression mechanisms, which require only one kind of input from the environment.

Key words

Dominance hierarchy Group size Hermaphroditism Mating system Polygamy potential Protandry Protogyny Sex ratio Size ratio Teleostei 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Aldenhoven, J.M. 1986. Different reproductive strategies in a sex-changing coral reef fishCentropyge bicolor (Pomacanthidae). Aust. J. Mar. Freshw. Res. 37: 353–360Google Scholar
  2. Allen, G.R. 1972. The anemonefishes: their classification and biology. T. F. H. Publications, Neptune City. 288 ppGoogle Scholar
  3. Charnov, E.L. 1982. The theory of sex allocation. Princeton University Press, Princeton. 355 ppGoogle Scholar
  4. Cole, K.S. & D.R. Robertson. 1988. Protogyny in the Caribbean reef goby,Coryphopterus personatus: gonad ontogeny and social influences on sex change. Bull. Mar. Sci. 42: 317–333Google Scholar
  5. Eibl-Eibesfeldt, I. 1960. Beobachtungen und Versuche an Anemonenfischen (Amphiprion) der Maldiven und Nicobaren. Z. Tierpsychol. 17: 1–10Google Scholar
  6. Emlen, S.T. & L.W. Oring. 1977. Ecology, sexual selection and the evolution of mating systems. Science 197: 215–223Google Scholar
  7. Essenberg, J.M. 1926. Complete sex reversal in the viviparous teleostXiphophorus helleri Heckel. Biol. Bull. 51: 98–111Google Scholar
  8. Fricke, H.W. 1979. Mating system, resource defense, and sex change in the anemonefishAmphiprion akallopisos. Z. Tierpsychol. 50: 313–326Google Scholar
  9. Fricke, H.W. 1980. Control of different mating systems in a coral reef fish by one environmental factor. Anim. Behav. 28: 561–569Google Scholar
  10. Fricke, H.W. 1983. Social control of sex: field experiments with the anemonefishAmphiprion bicinctus. Z. Tierpsychol. 61: 71–77Google Scholar
  11. Fricke, H.W. & S. Fricke. 1977. Monogamy and sex change by aggressive dominance in coral reef fish. Nature 266: 830–832Google Scholar
  12. Fricke, H.W. & S. Holzberg. 1974. Social units and hermapbroditism in a pomacentrid fish. Naturwissenschaften 61: 367–368Google Scholar
  13. Ghiselin, M.T. 1969. The evolution of hermaphroditism among animals. Quart. Rev. Biol. 44: 189–208Google Scholar
  14. Greenwood, P.H., D.E. Rosen, S.H. Weitzman & G.S. Myers. 1966. Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bull. Amer. Mus. Nat. Hist. 131: 339–456Google Scholar
  15. Hoffman, S.G. 1985. Effects of size and sex on the social organization of reef-associated hogfishes,Bodianus spp. Env. Biol. Fish. 14: 185–197Google Scholar
  16. Hoffman, S.G., M.F. Schildhauer & R.R. Warner. 1985. The costs of changing sex and the ontogeny of males under contest competition for mates. Evolution 39: 915–927Google Scholar
  17. Hourigan, T.F. & C.D. Kelley. 1985. Histology of the gonads and behavioral observations on the reproduction of the Caribbean angelfish,Holacanthus tricolor. Mar. Biol. 88: 311–322Google Scholar
  18. Jones, G.P. 1981. Spawning site choice by femalePseudolabrus celidotus (Pisces: Labridae) and its influence on the mating system. Behav. Ecol. Sociobiol. 8: 129–142Google Scholar
  19. Kinoshita, Y. 1936. On the conversion of sex inSparus longispinis (Temminck & Schlegel) (Teleostei). J. Sci. Horoshima Univ. (B-1) 4: 69–80Google Scholar
  20. Kuwamura, T. 1981. Life history and population fluctuation in the labrid fish,Labroides dimidiatus, near the northern limit of its range. Publ. Seto Mar. Biol. Lab. 26: 95–117Google Scholar
  21. Kuwamura, T. 1984. Social structure of the protogynous fishLabroides dimidiatus. Publ. Seto Mar. Biol. Lab. 29: 117–177Google Scholar
  22. Lassig, B.H. 1977. Socioecological strategies adopted by obligate coral-dwelling fishes. Proc. 3rd Intl. Coral Reef Symp., Miami 3: 565–570Google Scholar
  23. Lejeune, P. 1987. The effect of local stock density on social behavior and sex change in the Mediterranean labridCoris julis. Env. Biol. Fish. 18: 135–141Google Scholar
  24. Lutnesky, M. 1989. Stimulation, inhibition, and the induction of ‘early’ sex change in the pomacanthid angelfish,Centropyge potteri. Pac. Sci. (in press)Google Scholar
  25. Mariscal, R.N. 1966. The symbiosis between tropical sea anemones and fishes: a review. pp. 157–171.In: H.I. BowmanGoogle Scholar
  26. Mariscal, R.N. 1970. The nature of the symbiosis between Indo-Pacific anemonefishes and sea anemones. Mar. Biol. 6: 58–65Google Scholar
  27. Moyer, J.T. 1980. Influence of temperate waters on the behavior of the tropical anemonefishAmphiprion clarkii at Miyakejima, Japan. Bull. Mar. Sci. 30: 261–272Google Scholar
  28. Moyer, J.T. 1987. Social organization and protogynous hermaphroditism in marine angelfishes (Pomacanthidae). pp. 120–147.In: A. Nakazono & T. KuwamuraGoogle Scholar
  29. Moyer, J.T. & A. Nakazono. 1978. Population structure, reproductive behavior, and protogynous hermaphroditism in the angelfishCentropyge interruptus at Miyake-jima, Japan. Japan. J. Ichthyol. 25: 25–39Google Scholar
  30. Moyer, J.T. & A. Nakazono. 1978b. Protandrous hermaphroditism in six species of the anemonefish genusAmphiprion in Japan. Japan. J. Ichthyol. 25: 101–106Google Scholar
  31. Moyer, J.T., R.E. Thresher & P.L. Colin. 1983. Courtship, spawning, and inferred social organization of American angelfishes (generaPomacanthus, Holacanthus, andCentropyge; Pomacanthidae). Env. Biol. Fish. 9: 25–39Google Scholar
  32. Moyer, J.T. & M.J. Zaiser. 1984. Early sex change: a possible mating strategy ofCentropyge angelfishes (Pisces: Pomacanthidae). J. Ethol. 2: 63–67Google Scholar
  33. Nakamura, M., T.F. Hourigan, K. Yamauchi, Y. Nagahama & E.G. Grau. 1989. Histological and ultrastructural evidence for the role of gonadal steroid hormones in sex change in the protogynous wrasseThalassoma duperrey. Env. Biol. Fish. 24: 117–136Google Scholar
  34. Popper, D. & L. Fishelson. 1973. Ecology and behavior ofAnthias squamipinnis (Peters, 1855) (Anthiidae, Teleostei) in the coral habitat of Eilat (Red Sea). J. Exper. Zool. 184: 409–424Google Scholar
  35. Reese, E.S. 1978. The study of space-related behavior in aquatic animals: special problems and selected examples. pp. 347–374.In: E.S. Reese & F.J. LighterGoogle Scholar
  36. Reinboth, R. 1980. Can sex inversion be environmentally induced? Biol. Reprod. 22: 49–59Google Scholar
  37. Robertson, D.R. 1972. Social control of sex reversal in a coralreef fish. Science 177: 1007–1009Google Scholar
  38. Robertson, D.R. 1974. A study of the ethology and reproductive biology of the labrid fish,Labroides dimidiatus, at Heron Island, Great Barrier Reef. Ph.D. Thesis, University of Queensland, Brisbane. 295 ppGoogle Scholar
  39. Robertson, D.R. 1981. The social and mating systems of two labrid fishes,Halichoeres maculipinna andH. garnoti, off the Caribbean coast of Panama. Mar. Biol. 64: 327–340Google Scholar
  40. Robertson, D.R. & J.H. Choat. 1974. Protogynous hermaphroditism and social systems in labrid fish. Proc. 2nd Intl. Coral Reef Symp., Brisbane 1: 217–225Google Scholar
  41. Robertson, D.R. & S.G. Hoffman. 1977. The roles of female mate choice and predation in the mating systems of some tropical labroid fishes. Z. Tierpsychol. 45: 298–320Google Scholar
  42. Ross, R.M. 1978. Reproductive behavior of the anemonefishAmphiprion melanopus on Guam. Copeia 1978: 103–107Google Scholar
  43. Ross, R.M. 1978. Territorial behavior and ecology of the anemonefishAmphiprion melanopus on Guam. Z. Tierpsychol. 46: 71–83Google Scholar
  44. Ross, R.M. 1986. Social organization and mating system of the Hawaiian reef fishThalassoma duperrey (Labridae). pp. 794–802.In: T. Uyeno, H. Arai, T. Taniuchi & K. MatsuuraGoogle Scholar
  45. Ross, R.M. 1987. Sex-change linked growth acceleration in a coral-reef fish,Thalassoma duperrey. J. Exper. Zool. 244: 455–461Google Scholar
  46. Ross, R.M., G.S. Losey & M. Diamond. 1983. Sex change in a coral-reef fish: dependence of stimulation and inhibition on relative size. Science 221: 574–575Google Scholar
  47. Ross, R.M., T.F. Hourigan, M.M.F. Lutnesky & I. Singh. 1990. Multiple simultaneous sex changes in social groups of a coral-reef fish. Copeia (in press)Google Scholar
  48. Schoener, T.W. 1971. Theory of feeding strategies. Ann. Rev. Ecol. Syst. 2: 369–404Google Scholar
  49. Shapiro, D.Y. 1977. The structure and growth of social groups of the hermaphroditic fishAnthias squamipinnis (Peters). Proc. 3rd Intl. Coral Reef Symp., Miami 3: 571–578Google Scholar
  50. Shapiro, D.Y. 1979. Social behavior, group structure, and the control of sex reversal in hermaphroditic fish. Adv. Study Behav. 10: 43–102Google Scholar
  51. Shapiro, D.Y. 1980. Group sex ratio and sex reversal. J. Theor. Biol. 82: 411–426Google Scholar
  52. Shapiro, D.Y. 1984. Sex reversal and sociodemographic processes in coral reef fishes. pp. 103–118.In: G.W. Potts & R.J. WoottonGoogle Scholar
  53. Shapiro, D.Y. 1985. Behavioral influences on the initiation of adult sex change in coral reef fishes. pp. 585–586.In: B. Lofts & W.N. HolmesGoogle Scholar
  54. Shapiro, D.Y. 1986. Intra-group home ranges in a female-biased group of sex-changing fish. Anim. Behav. 34: 865–870Google Scholar
  55. Shapiro, D.Y. 1986. Subgroup independence and group development in a sex-changing fish. Anim. Behav. 34: 716–726Google Scholar
  56. Shapiro, D.Y. 1988. Behavioral influences on gene structure and other new ideas concerning sex change in fishes. Env. Biol. Fish. 23: 283–297Google Scholar
  57. Shpigel, M. & L. Fishelson. 1986. Behavior and physiology of coexistence in two species ofDascyllus (Pomacentridae, Teleostei). Env. Biol. Fish. 17: 253–265Google Scholar
  58. Smith, C.L. 1975. The evolution of hermaphroditism in fishes. pp. 295–310.In: H. Reinboth (ed.) Inter-sexuality in the Animal Kingdom, Springer-Verlag, HeidelbergGoogle Scholar
  59. Thresher, R.E. 1984. Reproduction in reef fishes. T. F. H. Publications. Neptune City. 399 ppGoogle Scholar
  60. Tribble, G.W. 1982. Social organization, patterns of sexuality, and behavior of the wrasseCoris dorsomaculata at Miyakejima, Japan. Env. Biol. Fish. 7: 29–38Google Scholar
  61. van Oordt, G.J. 1933. Zur Sexualität der GattungEpinephelus (Serranidae, Teleostei). Z. Mikr. Anat. Forsch. 33: 525–533Google Scholar
  62. Warner, R.R. 1975. The adaptive significance of sequential hermaphroditism in animals. Amer. Nat. 109: 61–82Google Scholar
  63. Warner, R.R. 1978. The evolution of hermaphroditism and unisexuality in aquatic and terrestrial vertebrates. pp. 77–101.In: E.S. Reese & F.J. LighterGoogle Scholar
  64. Warner, R.R. 1982. Mating systems, sex change, and sexual demography in the rainbow wrasse,Thalassoma lucasanum. Copeia 1982: 653–660Google Scholar
  65. Warner, R.R. 1984. Mating behavior and hermaphroditism in coral reef fishes. Amer. Sci. 72: 128–136Google Scholar
  66. Warner, R.R. 1988. Sex change in fishes: hypotheses, evidence, and objections. Env. Biol. Fish. 22: 81–90Google Scholar
  67. Warner, R.R. & D.R. Robertson. 1978. Sexual patterns in the labroid fishes of the western Caribbean, I: the wrases (Labridae). Smithsonian Contrib. Zool. 254: 1–27Google Scholar
  68. Warner, R.R., D.R. Robertson & E.G. Leigh. 1975. Sex change and sexual selection. Science 190: 633–638Google Scholar
  69. Wilson, E.O. 1975. Sociobiology: the new synthesis. Belknap Press, Cambridge. 697 ppGoogle Scholar
  70. Yanagisawa, Y. & H. Ochi. 1986. Stepfathering in the anemonefishAmphiprion clarkii: a removal study. Anim. Behav. 34: 1769–1780Google Scholar
  71. Yogo, Y. 1985. Studies on the sexual maturation and reproductive ecology in three protogynous fishes. Rep. Fish. Res. Lab. Kyushu Univ. 7: 37–83Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Robert M. Ross
    • 1
  1. 1.National Fishery Research and Development LaboratoryWellsboroU.S.A.

Personalised recommendations