Fish Physiology and Biochemistry

, Volume 11, Issue 1–6, pp 155–164 | Cite as

Osmoregulatory actions of growth hormone and its mode of action in salmonids: A review

  • Tatsuya Sakamoto
  • Stephen D. McCormick
  • Tetsuya Hirano


Osmoregulatory actions of growth hormone (GH) and its mode of action in salmonids are reviewed. We present evidence suggesting that insulin-like growth factor I (IGF-I) mediates some of the actions of GH on seawater acclimation. Plasma concentration and turnover of GH rise following exposure to seawater. Exogenous GH (in vivo) increases gill Na+,K+-ATPase activity and the number of gill chloride cells, and inhibits an increase in plasma osmolarity and ions following transfer of fish to seawater. A single class of high affinity GH receptors is present in the liver, gill, intestine, and kidney. The levels of IGF-I mRNA in the liver, gill and kidney increased after GH-injection. After transfer to seawater, IGF-I mRNA increased in the gill and kidney following the rise in plasma GH, although no significant change was seen in the liver. Injection of IGF-I improved the ability of the fish to maintain plasma sodium levels after transfer to seawater. GH treatment also sensitizes the interrenal to adrenocorticotropin (ACTH), increasing cortisol secretion. Both cortisol and IGF-I may be involved in mediating the action of GH in seawater adaptation, although studies on the effect of GH on osmoregulatory physiology of non-salmonid species are limited. An integrated model of the osmoregulatory actions of GH is presented, and areas in need of research are outlined.


growth hormone osmoregulation salmonids mode of action seawater adaptation growth hormone receptor insuline-like growth factor I cortisol thyroid hormones 


Cet article est une revue des effets osmorégulateurs de l'hormone de croissance et de son mode d'action. Nous présentons des résultats qui suggèrent que le facteur de croissance de type insuline (IGF-I) est un médiateur de certaines des actions de la GH sur l'adaptation à l'eau de mer. Les concentrations plasmatiques et le renouvellement de la GH augmentent après transfert en eau de mer. La GH exogène stimule (in vivo) l'activité Na+,K+-ATPase et le nombre de cellules à chlorure branchialeset inhibe les augmentations de l'osmolarité et des concentrations ioniques du plasma observées après transfert en eau de mer. Une seule classe de récepteurs à haute affinité pour la GH est présent dans le foie, les branchies, l'intestin et le rein. Les niveaux d'ARNm d'IGF dans le foie, les branchies et le rein augmentent après injection de la GH. Après transfert en eau de mer, les ARNm de l'IGF augmentent dans les branchies et dans le rein en suivant l'augmentation de GH plasmatique, bien qu'aucune modification ne soit observée au niveau du foie. L'injection d'IGF augmente la capacité du poisson à maintenir ses niveaux de sodium plasmatique après transfert en eau de mer. Le traitement à la GH augmente la sensibilité à l'adrenocorticotropine (ACTH) et stimule donc les niveaux de cortisol. A la fois le cortisol et l'IGF-I semblent impliqués comme médiateurs des effets de la GH dans l'adaptation à l'eau de mer, bien que les études sur les effets de la GH sur la physiologie de l'osmorégulation chez les espèces non-salmonidés restent encore limitées. Un modèle intégré des actions de la GH sur l'osmorégulation est présenté et les domaines de recherche à développer sont soulignés.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Baker, B.I. and Ingleton, P.M. 1975. Secretion of prolactin and growth hormone by teleost pituitaries in vitro. J. Comp. Physiol. 100: 269–282.Google Scholar
  2. Balment, R.J., Hazon, N. and Perrott, M.N. 1987. Control of corticosteroid secretion and its relation to osmoregulation in lower vertebrates. In Comparative Physiology of Environmental Adaptations. pp. 92–102. Edited by R. Kirsch and B. Lahlou. Karger, Basel.Google Scholar
  3. Bern, H.A., McCormick, S.D., Kelley, K.M., Gray, E.S., Nishioka, R.S., Madsen S.S. and Tsai, P.I. 1991. Insulin-like growth factors “under water”: role in growth and function of fish and other poikilothermic vertebrates. In Modern Concepts of Insulin-like Growth Factors. pp. 85–96. Edited by E.M. Spencer. Elsevier, New York.Google Scholar
  4. Bisbal, G.A. and Specker, J.L. 1991. Cortisol stimulates hypoosmoregulatory ability in Atlantic salmon, Salmo salar L. J. Fish Biol. 39: 421–432.CrossRefGoogle Scholar
  5. Björnsson, B.Th., Yamauchi, K., Nishioka, R.S., Deftos, L.J. and Bern, H.A. 1987. Effects of hypophysectomy and subsequent hormone replacement therapy on hormonal and osmoregulatory status of coho salmon Oncorhynchus kisutch. Gen. Comp. Endocrinol. 68: 421–430.PubMedCrossRefGoogle Scholar
  6. Björnsson, B.Th., Thorarensen, H., Hirano, T., Ogasawara, T. and Kristinsson, J.B. 1989. Photoperiod and temperature affect plasma growth hormone levels, growth, condition factor and hypoosmoregulatory ability of juvenile Atlantic salmon (Salmo salar) during parr-smolt transformation. Aquaculture 82: 77–91.CrossRefGoogle Scholar
  7. Blazer-Yost, B.L. and Cox, M. 1989. IGF-I stimulates renal epithelial Na+ transport. Am. J. Physiol. 255: C413–C417.Google Scholar
  8. Bolton, J.P., Takahashi, A., Kawauchi, H., Kubota, J. and Hirano, T. 1986. Development and validation of a salmon growth hormone radioimmunoassay. Gen. Comp. Endocrinol. 62: 230–238.PubMedCrossRefGoogle Scholar
  9. Bolton, J.P., Collie, N.L., Kawauchi, H. and Hirano, T. 1987. Osmoregulatory actions of growth hormone in rainbow trout (Salmo gairdneri). J. Endocrinol. 112: 63–68.PubMedGoogle Scholar
  10. Boeuf, G., Le Bail, P.Y. and Prunet, P. 1989. Growth hormone and thyroid hormones during Atlantic salmon, Salmo salar, smolting and after transfer to seawater. Aquaculture 82: 257–268.CrossRefGoogle Scholar
  11. Boeuf, G., Prunet, P. and Le Bail, P.Y. 1990. Is growth hormone treatment able to stimulate the smoltification in the Atlantic salmon? C.R. Acad. Sci. Paris 310 Serie III: 75–82.Google Scholar
  12. Brown, P.S. and Brown, S.C. 1987. Osmoregulatory actions of prolactin and other adenohypophysial hormones. In Vertebrate Endocrinology: Fundamentals and Biomedical Implications. Vol. 2. pp. 45–84. Edited by P.K.T. Pang and M.P. Schreibman. Academic Press, New York.Google Scholar
  13. Cao, Q.-P., Duguay, S.J., Plisetskaya, E., Steiner, D.F. and Chan, S.J. 1989. Nucleotide sequence and growth hormone-regulated expression of salmon insulin-like growth factor I mRNA. Mol. Endocrinol. 3: 2005–2010.PubMedGoogle Scholar
  14. Casanueva, F.F., Burguera, B., Tome, M.A., Lima, L., Tresguerres, J.A.F., Devesa, J. and Dieguez, C. 1988. Depending on the time of administration, dexamethasone potentiates or blocks growth hormone-releasing hormone-induced growth hormone release in man. Neuroendocrinology 47: 46–49.PubMedGoogle Scholar
  15. Ceda, G.P., Davis, R.G. and Hoffman, A.R. 1987. Glucocorticoid modulation of growth hormone secretion in vitro. Evidence for a biphasic effect on GH-releasing hormone mediated release. Acta Endocrinol. 114: 465–469.PubMedGoogle Scholar
  16. Chakraborti, P.K., and Weisbart, M. 1987. High-affinity cortisol receptor activity in the liver of the brook trout, Salvelinus fontinalis (Mitchill). Can. J. Zool. 65: 2498–2503.CrossRefGoogle Scholar
  17. Chakraborti, P.K., Weisbart, M. and Chakraborti, A. 1987. The presence of corticosteroid receptor activity in the gill of the brook trout, Salvelinus fontinalis. Gen. Comp. Endocrinol. 66: 323–332.PubMedCrossRefGoogle Scholar
  18. Chin, E., Zhou, J. and Bondy, C. 1992. Anatomical relationships in the patterns of insulin-like growth factor (IGF)-I, IGF binding protein-I, and IGF-I receptor gene expression in the rat kidney. Endocrinology 130: 3237–3245.PubMedCrossRefGoogle Scholar
  19. Clarke, W.C., Farmer, S.W. and Hartwell, K.M. 1977. Effects of teleost pituitary growth hormone on growth of Tilapia mossambica and on growth and seawater adaptation of sockeye salmon (Oncorhynchus nerka). Gen. Comp. Endocrinol. 33: 174–178.PubMedCrossRefGoogle Scholar
  20. Clarke, W.C., Schelbourn, J.E., Ogasawara, T. and Hirano, T. 1989. Effect of initial daylength on growth, seawater adaptability and plasma growth hormone levels in underyearling coho, chinook, and chum salmon. Aquaculture 82: 51–62.CrossRefGoogle Scholar
  21. Collie, N.L. and Stevens, J.J. 1985. Hormonal effects on L-proline transport in coho salmon (Oncorhynchus kisutch) intestine. Gen. Comp. Endocrinol. 59: 399–409.PubMedCrossRefGoogle Scholar
  22. Collie, N.L., Bolton, J.P., Kawauchi, H. and Hirano, T. 1989. Survival of salmonids in seawater and the time-frame of growth hormone action. Fish Physiol. Biochem. 7: 315–321.Google Scholar
  23. Duan, C. and Hirano, T. 1991. Plasma kinetics of growth hormone in the Japanese eel, Anguilla japonica. Aquaculture 95: 179–188.CrossRefGoogle Scholar
  24. Foskett, J.K., Bern, H.A., Machen, T.E. and Conner, M. 1983. Chloride cells and the hormonal control of fish osmoregulation. J. Exp. Biol. 106: 255–281.PubMedGoogle Scholar
  25. Gray, E.S., Young, G. and Bern, H.A. 1990. Radioreceptor assay for growth hormone in coho salmon (Oncorhynchus kisutch) and its application to the study of stunting. J. Exp. Zool. 256: 290–296.PubMedCrossRefGoogle Scholar
  26. Gray, E.S. and Kelley, K.M. 1991. Growth regulation in the gobiid teleost, Gillichthys mirabilis: role of growth hormone, hepatic growth hormone receptors, and insulin-like growth factor I. J. Endocrinol. 131: 57–66.PubMedGoogle Scholar
  27. Gray, E.S., Kelley, K.M., Law, S., Tsai, R., Young, G. and Bern, H.A. 1993. Regulation of hepatic growth hormone receptors in coho salmon (Oncorhynchus kisutch). Gen. Comp. Endocrinol. (in press).Google Scholar
  28. Green, H., Morikawa, M. and Nixon, T. 1985. A dual effector theory of growth hormone action. Differentiation 29: 195–198.PubMedGoogle Scholar
  29. Hall, T.R. and Chadwick, A. 1978. Control of prolactin and growth hormone secretion in the eel Anguilla anguilla. Gen. Comp. Endocrinol. 36: 388–395.PubMedCrossRefGoogle Scholar
  30. Hasegawa, S., Hirano, T., Ogasawara, T., Iwata, M., Akiyama, T. and Arai, S. 1987. Osmoregulatory ability of chum salmon, Oncorhynchus keta, reared in fresh water for prolonged periods. Fish Physiol. Biochem. 4: 101–110.CrossRefGoogle Scholar
  31. Helms, L.M.H., Grau, E.G., Shimoda, S.K., Nishioka, R.S. and Bern, H.A. 1987. Studies on the regulation of growth hormone (GH) release from the proximal pars distalis (PPD) of the tilapia, Oreochromis mossambicus, in vitro. Gen. Comp. Endocrinol. 65: 48–55.PubMedCrossRefGoogle Scholar
  32. Higgs, D.A., Donaldson, E.M., Dye, H.M. and McBride, J.R. 1976. Influence of bovine growth hormone and L-thyroxine on growth, muscle composition, and histological structure of the gonads, thyroid, pancreas, and pituitary of coho salmon. J. Fish Res. Bd. Can. 33: 1583–1603.Google Scholar
  33. Higgs, D.A., Fagerlund, U.H.M., McBride, J.R., Dye, H.M. and Donaldson, E.M. 1977. Influence of combinations of bovine growth hormone, 17α-methyltestosterone, and L-thyroxine on growth of yearling coho salmon (Oncorhynchus kisutch). Can. J. Zool. 55: 1048–1056.PubMedGoogle Scholar
  34. Hirano, T. and Utida, S. 1971. Plasma cortisol concentration and the rate of intestinal water absorption in the eel, Anguilla japonica. Endocrinol. Japon. 18: 47–52.Google Scholar
  35. Hirano, T., Ogasawara, T., Bolton, J.P., Collie, N.L., Hasegawa, S. and Iwata, M. 1987. Osmoregulatory role of prolactin in lower vertebrate. In Comparative Physiology of Environmental Adaptations. pp. 112–124. Edited by R. Kirsch and B. Lahlou. Karger, Basel.Google Scholar
  36. Hirano, T., Ogasawara, T., Hasegawa, S. and Iwata, M. 1989. Changes in plasma hormone levels during loss of hypoosmoregulatory capacity in mature chum salmon (Oncorhynchus keta) kept in seawater. Gen. Comp. Endocrinol. 78: 254–262.CrossRefGoogle Scholar
  37. Hoar, W.S. 1988. The physiology of smolting salmonids. In Fish Psychology, Vol. XIB. pp. 275–343. Edited by W.S. Hoar and D.J. Randall. Academic Press, San Diego.Google Scholar
  38. Kelly, P.A., Djiane, J., Postel-Vinay, M.-C. and Edery, M. 1991. The prolactin/growth hormone receptor family. Endocr. Rev. 12: 235–251.PubMedGoogle Scholar
  39. Komourdjian, M.P., Saunders, R.L. and Fenwick, J.C. 1976. The effect of porcine somatotropin on growth, and survival in seawater of Atlantic salmon (Salmo salar) parr. Can. J. Zool. 54: 531–535.PubMedGoogle Scholar
  40. Leatherland, J.F. and McKeown, B.A. 1974. Effects of ambient salinity on prolactin and growth hormone secretion and on hydromineral regulation in kokanee salmon smolts (Oncorhynchus nerka). J. Comp. Physiol. 89: 215–226.CrossRefGoogle Scholar
  41. Lebel, J.M. and Leloup, J. 1992. Triiodothryonine is required for the acclimation to seawater of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). C. R. Acad. Sci. Paris 314 Serie III: 461–468.PubMedGoogle Scholar
  42. MacLatchy, D. and Eales, J.G. 1990. Growth hormone stimulates hepatic thyroxine 5′-monodeiodinase activity and 3,5,3′-triiodothyronine levels in rainbow trout (Salmo gairdneri). Gen. Comp. Endocrinol. 78: 164–172.PubMedCrossRefGoogle Scholar
  43. MacLatchy, D., Kawauchi, H. and Eales, J.G. 1992. Stimulation of hepatic thyroxine 5′-deiodinase activity in rainbow trout (Oncorhynchus mykiss) by Pacific salmon growth hormone. Comp. Biochem. Physiol. 101A: 689–691.CrossRefGoogle Scholar
  44. Madsen, S.S. 1990a. Cortisol treatment improves the development of hypoosmoregulatory mechanisms in the euryhaline rainbow trout, Salmo gairdneri. Fish Physiol. Biochem. 8: 45–52.CrossRefGoogle Scholar
  45. Madsen, S.S. 1990b. Enhanced hypoosmoregulatory response to growth hormone after cortisol treatment in immature rainbow trout, Salmo gairdneri. Fish Physiol. Biochem. 8: 271–279.CrossRefGoogle Scholar
  46. Madsen, S.S. 1990c. The role of cortisol and growth hormone in seawater adaptation and development of hypoosmoregulatory mechanisms in sea trout parr (Salmo trutta trutta). Gen. Comp. Endocrinol. 79: 1–11.PubMedCrossRefGoogle Scholar
  47. Madsen, S.S. and Bern, H.A. 1991. Studies of peptide hormone interactions on seawater adaptation of several teleosts. Abst. 66th International Symposium Fish Physiology, Odense, Denmark.Google Scholar
  48. Madsen, S.S. and Bern, H.A. 1992. Antagonism of prolactin and growth hormone: Impact on seawater adaptation in two salmonids, Salmo trutta and Oncorhynchus mykiss. Zool. Sci. 9: 775–784.Google Scholar
  49. Markert, J.R., Higgs, D.A., Dye, H.M. and MacQuarrie, D.W. 1977. Influence of bovine growth hormone on growth rate, appetite, and food conversion of yearling coho salmon (Oncorhynchus kisutch) fed two diets of different composition. Can. J. Zool. 55: 74–83.PubMedCrossRefGoogle Scholar
  50. Mayer, M. and Maetz, J. 1967. Cortisol, a sodium excreting factor in the eel (Anguilla anguilla L.) adapted to seawater. Nature, Lond. 214: 1118–1120.CrossRefGoogle Scholar
  51. McCormick, S.D. and Saunders, R.L. 1987. Preparatory physiological adaptations for marine life of salmonids: osmoregulation, growth, and metabolism. Am. Fish Soc. Symp. 1: 211–229.Google Scholar
  52. McCormick, S.D. and Bern, H.A. 1989. In vitro stimulation of Na+,K+-ATPase activity and ouabain binding by cortisol in coho salmon gill. Am. J. Physiol. 256: R707–R715.PubMedGoogle Scholar
  53. McCormick, S.D., Sakamoto, T., Hasegawa, S. and Hirano, T. 1991. Osmoregulatory actions of insulin-like growth factor I in rainbow trout (Oncorhynchus mykiss). J. Endocrinol. 130: 87–92.PubMedGoogle Scholar
  54. McCormick, S.D. and Björnsson, B.Th. 1993. Physiological and hormonal differences among naturally-reared Atlantic salmon migrants and non-migrants, and hatchery smolts. Aquaculture (in press).Google Scholar
  55. McKeown, B.A., Leatherland, J.F. and John, T.M. 1975. The effect of growth hormone and prolactin on the mobilization of free fatty acids and glucose in the kokanee salmon (Oncorhynchus nerka). Comp. Biochem. Physiol. 50B: 425–430.Google Scholar
  56. Miwa, S. and Inui, Y. 1985. Effects of L-thyroxine and ovine growth hormone on smoltification of amago salmon (Oncorhynchus rhodurus). Gen. Comp. Endocrinol. 58: 436–442.PubMedCrossRefGoogle Scholar
  57. Mori, I., Sakamoto, T. and Hirano, T. 1992. Growth hormone (GH)-dependent hepatic GH receptors in the Japanese eel, Anguilla japonica: effects of hypophysectomy and GH injection. Gen. Comp. Endocrinol. 85: 385–391.PubMedCrossRefGoogle Scholar
  58. Nagahama, Y. 1973. Histophysiological studies on the pituitary gland of some teleost fishes with special reference to the classification of hormone producing cells of the adenohypophysis. Mem. Fac. Fish. Hokkaido Univ. 21: 1–63.Google Scholar
  59. Nishioka, R.S., Grau, E.G. and Bern, H.A. 1985. In vitro release of growth hormone from the pituitary gland of tilapia. Oreochromis mossambicus. Gen. Comp. Endocrinol. 60: 90–94.PubMedCrossRefGoogle Scholar
  60. Nishioka, R.S., Richman, N.H., Young, G., Prunet, P. and Bern, H.A. 1987. Hypophysectomy of coho salmon (Oncorhynchus kisutch) and survival in fresh water and seawater. Aquaculture 65: 343–352.CrossRefGoogle Scholar
  61. Ogasawara, T., Kubota, J., Sakamoto, T. and Hirano, T. 1988. Osmoregulatory roles of prolactin and growth hormone in teleosts. In Prolactin Gene Family and its Receptors. pp. 367–375. Edited by K. Hoshino. Elsevier, Amsterdam.Google Scholar
  62. Ogasawara, T., Hirano, T., Akiyama, T., Arai, S. and Tagawa, M., 1989. Changes in plasma prolactin and growth hormone concentrations during freshwater adaptation of juvenile chum salmon (Oncorhynchus keta) reared in seawater for a prolonged period. Fish Physiol. Biochem. 7: 309–313.Google Scholar
  63. Okumoto, N., Ikuta, K., Aida, K., Hanyu, I. and Hirano, T. 1989. Effects of photoperiod on smolting and hormonal secretion in masu salmon, Oncorhynchus masou. Aquaculture 82: 63–76.CrossRefGoogle Scholar
  64. Oliverau, M. and Ball, J.N. 1970. Pituitary influences on osmoregulation in teleosts. Mem. Soc. Endocrinol. 18: 57–85.Google Scholar
  65. Pickering, A.D., Pottinger, T.G., Sumpter, J.P., Carragher, J.F. and Le Bail, P.Y. 1991. Effects of acute and chronic stress on the levels of circulating growth hormone in the rainbow trout, Oncorhynchus mykiss. Gen. Comp. Endocrinol. 83: 86–93.PubMedCrossRefGoogle Scholar
  66. Pickford, G.E., Panag, P.K.T., Weinstein, E., Torretti, J., Hendler, E. and Epstein, F.H. 1970. The response of the hypophysectomized cyprinodont Fundulus heteroclitus, to replacement therapy with cortisol: Effects on blood serum and sodium-potassium activated adenosine triphosphatase in the gills, kidney, and intestinal mucosa. Gen. Comp. Endocrinol. 14: 524–534.PubMedCrossRefGoogle Scholar
  67. Prunet, P., Boeuf, G., Bolton, J.P. and Young, G. 1989. Smoltification and seawater adaptation in Atlantic salmon (Salmo salar): plasma prolactin, growth hormone, and thyroid hormones. Gen. Comp. Endocrinol. 74: 355–364.PubMedCrossRefGoogle Scholar
  68. Richman, N.H. and Zaugg, W.S. 1987. Effects of cortisol and growth hormone on osmoregulation in pre- and desmoltified coho salmon (Oncorhynchus kisutch). Gen. Comp. Endocrinol. 65: 189–198.PubMedCrossRefGoogle Scholar
  69. Richman, N.H., Nishioka, R.S., Young, G. and Bern, H.A. 1987. Effects of cortisol and growth hormone replacement on osmoregulation in hypophysectomized coho salmon (Oncorhynchus kisutch). Gen. Comp. Endocrinol. 67: 194–201.PubMedCrossRefGoogle Scholar
  70. Rydevik, M., Borg, B., Haux, C., Kawauchi, K. and Björnsson, B.Th. 1990. Plasma growth hormone levels increase during seawater exposure of sexually mature Atlantic salmon parr (Salmo salar L.). Gen. Comp. Endocrinol. 80: 9–15.PubMedCrossRefGoogle Scholar
  71. Sakamoto, T., Ogasawara, T. and Hirano, T. 1990. Growth hormone kinetics during adaptation to a hyperosmotic environment in rainbow trout. J. Comp. Physiol. 160B: 1–6.Google Scholar
  72. Sakamoto, T. and Hirano, T. 1991. Growth hormone receptors in the liver and osmoregulatory organs of rainbow trout: characterization and dynamics during adaptation to seawater. J. Endocrinol. 130: 425–433.PubMedGoogle Scholar
  73. Sakamoto, T. and Hirano, T. 1993. Expression of insulin-like growth factor I gene in osmoregulatory organs during seawater adaptation of the salmonid fish: possible mode of osmoregulatory action of growth hormone. Proc. Nat. Acad. Sci. U.S.A. 90 (In press).Google Scholar
  74. Sakamoto, T., Iwata, M. and Hirano, T. 1991. Kinetic studies of growth hormone and prolactin during adaptation of coho salmon, Oncorhynchus kisutch to different salinities. Gen. Comp. Endocrinol. 82: 184–191.PubMedCrossRefGoogle Scholar
  75. Sheridan, M.A. 1986. Effects of thyroxine, cortisol, growth hormone, and prolactin on lipid metabolism of coho salmon, Oncorhynchus kisutch, during smoltification. Gen. Comp. Endocrinol. 64: 220–238.PubMedCrossRefGoogle Scholar
  76. Sheridan, M.A. 1988. Lipid dynamics in fish: aspects of absorption, transportation, deposition and mobilization. Comp. Biochem. Physiol. 90B: 679–690.Google Scholar
  77. Smith, D.C.W. 1956. The role of the endocrine organs in the salinity tolerance of trout. Mem. Soc. Endocrinol. 5: 83–101.Google Scholar
  78. Suzuki, R., Kishida, M., Ogasawara, T., Hasegawa, S. and Hirano, T. 1987. Prolactin and growth hormone secretion during long-term incubations of the pituitary pars distalis of mature chum salmon, Oncorhynchus keta. Gen. Comp. Endocrinol. 68: 76–81.PubMedCrossRefGoogle Scholar
  79. Suzuki, R., Kishida, M. and Hirano, T. 1990. Growth hormone secretion during longterm incubation of the pituitary of the Japanese eel, Anguilla japonica. Fish. Physiol. Biochem. 8: 159–165.CrossRefGoogle Scholar
  80. Suzuki, R., Kaneko, T. and Hirano, T. 1991. Effects of osmotic pressure on prolactin and growth hormone secretion from organ-cultured eel pituitary. J. Comp. Physiol. 161B: 147–153.Google Scholar
  81. Sweeting, R.M., Wagner, G.F. and McKeown, B.A. 1985. Changes in plasma glucose, amino acid nitrogen and growth hormone during smoltification and seawater adaptation in coho salmon, Oncorhynchus kisutch. Aquaculture 45: 185–197.CrossRefGoogle Scholar
  82. Sweeting, R.M. and McKeown, B.A. 1987. Growth hormone and seawater adaptation in coho salmon, Oncorhynchus kisutch. Comp. Biochem. Physiol. 88A: 147–151.CrossRefGoogle Scholar
  83. Varnavsky, V.S., Sakamoto, T. and Hirano, T. 1992. Stunting of wild coho salmon (Oncorhynchus kisutch) in seawater: patterns of plasma thyroid hormones, cortisol and growth hormone. Can. J. Fish Aquat. Sci. 49: 458–461.Google Scholar
  84. Veillette, P., Cornell, S., Portesi, D., Webster, R., Bartel, R. and Specker, J.L. 1991. Effects of cortisol and growth hormone on intestinal fluid transport in Atlantic salmon, Salmo salar. Abst. New England Endocrinology Conference, Boston, New England, U.S.A.Google Scholar
  85. Weisbart, M., Chakraborti, P.K., Gottschall, F. and Freeman, H.C. 1989. Effects of acid environments on cortisol and cortisol receptor activity in Atlantic salmon, Salmo salar. Fish Physiol. Biochem. 7: 267–272.Google Scholar
  86. Yada, T., Takahashi, K. and Hirano, T. 1991. Seasonal changes in seawater adaptability and plasma levels of prolactin and growth hormone in landlocked sockeye salmon (Oncorhynchus nerka) and amago salmon (O. rhodurus). Gen. Comp. Endocrinol. 82: 33–44.PubMedCrossRefGoogle Scholar
  87. Yada, T. and Hirano, T. 1992. Influence of seawater adaptation on prolactin and growth hormone release from organ-cultured pituitary of rainbow trout. Zool. Sci. 9: 143–148.Google Scholar
  88. Yada, T., Kobayashi, T., Urano, A. and Hirano, T. 1992. Changes in growth hormone and prolactin messenger ribonucleic acid levels during seawater adaptation of amago salmon (Oncorhynchus rhodurus). J. Exp. Zool. 262: 420–425.PubMedCrossRefGoogle Scholar
  89. Yao, K., Niu, P.-D., Le Gac, F. and Le Bail, P.-Y. 1991. Presence of GH specific binding sites in rainbow trout (Oncorhynchus mykiss) tissues: characterization of the hepatic receptor. Gen. Comp. Endocrinol. 81: 72–82.PubMedCrossRefGoogle Scholar
  90. Young, G. 1988. Enhanced response of the interrenal of coho salmon (Oncorhynchus kisutch) to ACTH after growth hormone treatment in vivo and in vitro. Gen. Comp. Endocrinol. 71: 85–92.PubMedCrossRefGoogle Scholar
  91. Young, G., Björnsson, B.Th., Prunet, P., Lin, R.J. and Bern, H.A. 1989a. Smoltification and seawater adaptation in coho salmon (Oncorhynchus kisutch): plasma prolactin, growth hormone, thyroid hormones, and cortisol. Gen. Comp. Endocrinol. 74: 335–345.PubMedCrossRefGoogle Scholar
  92. Young, G., Prunet, P., Ogasawara, T., Hirano, T. and Bern, H.A. 1989b. Growth retardation (stunting) in coho salmon: plasma hormone levels in stunts in seawater and after transfer to fresh water. Aquaculture 82: 269–278.CrossRefGoogle Scholar

Copyright information

© Kugler Publications 1993

Authors and Affiliations

  • Tatsuya Sakamoto
    • 1
  • Stephen D. McCormick
    • 2
  • Tetsuya Hirano
    • 1
  1. 1.Laboratory of Physiology, Ocean Research InstituteUniversity of TokyoNakano, TokyoJapan
  2. 2.Anadromous Fish Research CenterU.S. Fish and Wildlife ServiceTurners FallsU.S.A.

Personalised recommendations