Fish Physiology and Biochemistry

, Volume 10, Issue 4, pp 283–289 | Cite as

Monosaccharides as energy resources during motility of spermatozoa in Leuciscus cephalus (Cyprinidae, Teleostei)

  • F. Lahnsteiner
  • R. A. Patzner
  • T. Weismann


Spermatozoa of Leuciscus cephalus have the enzymatic outfit for glycolysis but lack lipase, phospholipase and glucosidase activities. Therefore, they are not able to utilize lipids and polysaccharides as energy resources. During motility they use monosaccharides as energy reservoirs: the intracellular glucose, galactose and fructose levels decrease significantly while lactate levels increase.


Glucose Lipid Lactate Lipase Polysaccharide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Asahina, K., Barry, T.R., Aida, K., Fusetani, N. and Hanyu, I. 1990. Biosynthesis of 17a, 20-α dihydroxy-4-Pregnen-3-one from 17 hydroxyprogesterone by spermatozoa of the common carp, Cyprinus carpio. J. Exp. Zool. 255: 244–249.Google Scholar
  2. Bergmeyer, H.U. 1985: Methods of Enzymatic Analysis. VCH Verlagsgesellschaft, Weinheim.Google Scholar
  3. Billard, R. and Cosson, M.P. 1992. Some problems related to the assessment of sperm motility in fresh water fish. J. Exp. Zool. 261: 122–131.Google Scholar
  4. Christen, R., Gatti, J.L. and Billard, R. 1987. Trout sperm motility: the transient movement of trout sperm is related to changes in concentration of ATP following the activation of the flagellar movement. Eur. J. Biochem. 166: 667–671.Google Scholar
  5. Gardiner, D.M. 1978. Utilization of extracellular glucose by spermatozoa of two viviparous fishes. Comp. Biochem. Physiol. 59: 165–168.Google Scholar
  6. Gosh, R.I. 1989. Energy metabolism in fish spermatozoids: a review. Gidrobiol. Zh. 25: 61–71.Google Scholar
  7. Lahnsteiner, F. and Patzner, R.A. 1991. A new method for electron microscopical fixation of fish spermatozoa. Aquaculture 97: 301–304.Google Scholar
  8. Lahnsteiner, F., Patzner, R.A. and Weismann, T. 1991a. Energy metabolism in spermatozoa of the grayling (Thymallus thymallus). Proc. 4th Int. Symp. Reproductive Physiology of Fish, Norwich, p. 279, 1991.Google Scholar
  9. Lahnsteiner, F., Patzner, R.A. and Weismann, T. 1991b. The spermatic duct of salmonid fishes (Salmonidae, Teleostei): morphology, histochemistry and composition of the secretion. J. Fish Biol. (in press).Google Scholar
  10. Lowenstein, J.M. 1976. Methods in Enzymology: Lipids. Vol. 14. Academic Press, New York.Google Scholar
  11. Piironen, J. and Hyvärinen, H. 1983. Composition of the milt of some teleost fishes. J. Fish Biol. 22: 351–361.Google Scholar
  12. Terner, C. and Korsh, G. 1963a. The oxidative metabolism of pyruvate, acetate and glucose in isolated fish spermatozoa. J. Cell. Comp. Physiol. 62: 243–249.Google Scholar
  13. Terner, C., Korsh, G., 1963b. The biosynthesis of fatty acids of glycerides and phosphatides by isolated spermatozoa of the rainbow trout. J. Cell. Comp. Physiol. 62: 251–255.Google Scholar
  14. Stoss, J. 1983. Fish gamete preservation and spermatozoon physiology. In Fish Physiology. Vol. 9, pp. 305–350. Edited by W.S. Hoar, D.J. Randall and E.M. Donaldson. Academic press, New York.Google Scholar
  15. Williamson, D.H., Mellanby, J. and Krebs, H.A. 1962. Enzymatic determination of β-hydroxybutyric acid and acetoacetic acid in blood. Biochem. J. 82: 90.Google Scholar

Copyright information

© Kugler Publications 1992

Authors and Affiliations

  • F. Lahnsteiner
    • 1
  • R. A. Patzner
    • 1
  • T. Weismann
    • 2
  1. 1.Zoological InstituteUniversity of SalzburgSalzburg
  2. 2.Bundesanstalt für FischereiwirtschaftMondseeAustria

Personalised recommendations