Fish Physiology and Biochemistry

, Volume 8, Issue 2, pp 147–158 | Cite as

Does Amia Calva aestivate?

  • David J. McKenzie
  • David J. Randall
Article

Abstract

During gradual air exposure, Amia calva show no reduction in oxygen consumption, no increase in plasma urea levels or in urea excretion. Blood pH remains constant, and plasma total CO2, PCO 2, HCO3 -. total ammonia and NH3 concentrations all rise significantly. Exposure to 923 μmol/l NH4Cl does not elicit an increase in urea production or airbreathing. Aquatic hypoxia without access to air does not cause a reduction in aerobic metabolism, and moderate levels result in death. These results suggest that Amia are incapable of aestivation, due to an inability to detoxify ammonia to urea and reduce metabolism, and die following three to five days of air exposure.

Keywords

Amia calva aestivation ammonia urea hypoxia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Babikker, M.M. and El Hakeem, O. 1979. Changes in blood characteristics and constituents associated with aestivation in the African lungfish, Protopterus annectens. Zool. Anz. 202: 9–16.Google Scholar
  2. Bicudo, J.E.P.W. and Johansen, K. 1979. Respiratory gas exchange in the air breathing fish, Symbranchus marmoratus. Environ. Biol. Fish. 4: 55–64.CrossRefGoogle Scholar
  3. Boutilier, R.G., Randall, D.J. Shelton, G. and Toews, D.P. 1979. Acid-base relationships in the blood of the toad, Bufo marinus. III. The effects of burrowing. J. Exp. Biol. 82: 357–365.PubMedGoogle Scholar
  4. Boutilier, R.G., Heming, T.A. and Iwama, G.K. 1984. Physicochemical parameters for use in fish respiratory physiology. In Fish Physiology. Vol. 9. pp. 401–430. Edited by W.S. Hoar and D.J. Randall. Academic Press, New York.Google Scholar
  5. Boutilier, R.G., Dobson, G., Hoeger, U. and Randall, D.J. 1988. Acute exposure to graded levels of hypoxia in rainbow trout (Salmo gairdneri): Metabolic and respiratory adaptations. Respir. Physiol. 71: 69–82.PubMedCrossRefGoogle Scholar
  6. Burggren, W.W. and Randall, D.J. 1978. Oxygen uptake and transport during hypoxic exposure in the sturgeon (Acipenser transmontanus) Respir. Physiol. 34: 171–183.PubMedCrossRefGoogle Scholar
  7. Cameron, J.N. and Heisler, N. 1983. Studies of ammonia in the rainbow trout: physico-chemical parameters, acid-base behaviour and respiratory clearance. J. Exp. Biol. 105: 107–125.Google Scholar
  8. Claireaux, G., Thomas, S., Fievet, B. and Motais, R. 1988. Adaptive respiratory responses of trout to acute hypoxia. II. Blood oxygen carrying properties during hypoxia. Respir. Physiol. 74: 91–98.PubMedCrossRefGoogle Scholar
  9. Crocker, C.L. 1967. Rapid method for serum and plasma deproteinization. Am. J. Med. Technol. 33: 361–365.PubMedGoogle Scholar
  10. Daxboeck, C., Barnard, D.K. and Randall, D.J. 1981. Functional significance of the gills of the bowfin, Amia calva, with special reference to their significance during air-exposure. Respir. Physiol. 43: 349–364.PubMedCrossRefGoogle Scholar
  11. Delaney, R.G., Lahiri, S. and Fishman, A.P. 1977. Aestivation of the African lungfish Protopterus aethiopicus: cardiovascular and respiratory functions. J. Exp. Biol. 61: 111–128.Google Scholar
  12. Delaney, R.G., Lahiri, S., Hamilton, R. and Fishman, A.P. 1977. Acid-base balance and plasma composition in the aestivating lungfish, Protopterus. Am. J. Physiol. 232: R10–R17.PubMedGoogle Scholar
  13. Dence, W.A. 1933. Notes on a large bowfin (Amia calva) living in a mud puddle. Copiea 1: 35.CrossRefGoogle Scholar
  14. Heming, T.A. and Watson, T.A. 1986. Activity and inhibition of carbonic anhydrase in Amia calva, a bimodal-breathing holostean fish. J. Fish Biol. 28: 385–392.CrossRefGoogle Scholar
  15. Janssens, P.A. 1964. The metabolism of the aestivating african lungfish. Comp. Biochem. Physiol. 11: 105–117.PubMedCrossRefGoogle Scholar
  16. Janssens, P.A. and Cohen, P.P. 1968a. Nitrogen metabolism in the african lungfish. Comp. Biochem. Physiol. 24: 879–886.PubMedCrossRefGoogle Scholar
  17. Janssens, P.A. and Cohen, P.P. 1968b. Biosynthesis of urea in the african lungfish and in Xenopus laevis under conditions of water shortage. Comp. Biochem. Physiol. 24: 887–898.PubMedCrossRefGoogle Scholar
  18. Johansen, K., Hanson, D. and Lenfant, C. 1970. Respiration in the primitive air breather, Amia calva. Respir. Physiol. 9: 162–174.PubMedCrossRefGoogle Scholar
  19. Loveridge, J.P. and Withers, P.C. 1981. Metabolism and water balance of active and cocooned african bullfrogs, Pyxicephalus adspersus. Physiol. Zool. 54: 203–214.Google Scholar
  20. Mommsen, T.P. and Walsh, P.J. 1989. Evolution of urea synthesis in vertebrates: The Piscine connection. Science, 243: 72–75.PubMedGoogle Scholar
  21. Neill, W.T. 1950. An aestivating bowfin. Copiea 240.Google Scholar
  22. Olson, K.R. and Fromm, P.O. 1971. Excretion of urea by two teleosts exposed to different concentrations of ambient ammonia. Comp. Biochem. Physiol. 40A: 999–1007.CrossRefGoogle Scholar
  23. Pusey, B.J. 1986. The effect of starvation on oxygen consumption and nitrogen excretion in Lepidogalaxias salamandroides (Mees). J. Comp. Physiol. 156: 701–705.Google Scholar
  24. Randall, D.J., Cameron, J.N., Daxboeck, C. and Smatresk, N. 1981. Aspects of bimodal gas exchange in the bowfin Amia calva L. (Actinopterygii: Amiiformes). Respir. Physiol. 43: 339–348.PubMedCrossRefGoogle Scholar
  25. Randall, D.J. and Wright, P.A. 1987. Ammonia distribution and excretion in fish. Fish Physiol. Biochem. 3: 107–120.CrossRefGoogle Scholar
  26. Saha, N. and Ratha, B.K. 1987. Active ureogenesis in a freshwater, air breathing teleost Heteropneustes fossilis. J. Exp. Zool. 241: 137–141.CrossRefGoogle Scholar
  27. Seymour, R.S. 1973. Energy metabolism of dormant spadefoot toads (Scaphiopus). Copiea 3: 436–445.Google Scholar
  28. Smatresk, N. and Cameron, J.N. 1982. Respiration and acid-base physiology of the spotted gar, a bimodal breather. I. Normal values and the response to severe hypoxia. J. Exp. Biol. 96: 263–280.Google Scholar
  29. Smatresk, N.J. 1988. Control of the respiratory mode in air breathing fishes. Can. J. Zool. 66: 144–151.CrossRefGoogle Scholar
  30. Smith, H.W. 1961. From Fish to Philosopher. Doubleday and Co., New York.Google Scholar
  31. Soivio, A., Westman, D.C. and Nyholm, K. 1972. Improved method of dorsal aorta catheterisation: haematological effects followed for three weeks in rainbow trout (Salmo gairdneri). Finn. Fish. Res. 1: 11–21.Google Scholar
  32. Verdouw, H., van Echteld, C.J.A. and Dekkers, E.M.G. 1978. Ammonia determination based on indophenol formation with sodium salicylate. Water. Res. 12: 399–402.CrossRefGoogle Scholar
  33. Wolf, K. 1963. Physiological salines for freshwater teleosts. Prog. Fish-Cult. 25: 135–140.Google Scholar
  34. Zar, J.H. 1984. Biostatistical Analysis (2nd ed.) Prentice-Hall Inc., New Jersey.Google Scholar

Copyright information

© Kugler Publications 1990

Authors and Affiliations

  • David J. McKenzie
    • 1
  • David J. Randall
    • 1
  1. 1.Department of ZoologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations