Fish Physiology and Biochemistry

, Volume 13, Issue 3, pp 263–274 | Cite as

Elasmobranch pericardial function. 3. The pericardioperitoneal canal in the horn sharkHeterodontus francisci

  • Daniel C. Abel
  • William R. Lowelll
  • Melody A. Lipke
Article

Abstract

The pericardial and peritoneal spaces of elasmobranch fishes are connected by the pericardioperitoneal canal (PPC), which allows pericardial fluid to escape when pressures exceed 0.1–0.3 kPA. Using the horn shark (Heterodontus francisci), we tested the hypothesis that the PPC functions to increase cardiac stroke volume by lowering pericardial pressure during activity. We also assessed the role of the PPC during coughing, feeding, or burst swimming and examined the effects of PPC occlusion. Increases in heart size were not prevented following augmented venous return in sharks with undisturbed or occluded PCP, evidence that argues that pericardial fluid loss through the PPC is a cause of increased cardiac stroke volume and not the result. Coughs, feeding, and burst swimming led to discharge of pericardial fluid. Chronic PPC occlusion resulted in an increased pericardial pressure, fluid volume, and frequency of coughing, and a decreased survival time compared to shams. Thus, in the horn shark the PPC likely compensates for constraints that may be imposed by the pericardium, provides a route for pericardial drainage, and regulates cardiac stroke volume during periods of activity.

Keywords

elasmobranch heart Heterodontus pericardioperitoneal canal pericardium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Abel, D.C., Graham, J.B., Lowell, W.R. and Shabetai, R. 1986. Elasmobranch pericardial function. 1. pericardial pressures are not always negative. Fish Physiol. Biochem. 1: 75–83.CrossRefGoogle Scholar
  2. Abel, D.C., Lowell, W.R., Graham, J.B. and Shabetai, R. 1987. Elasmobranch pericardial function. 2. the influence of pericardial pressure on cardiac stroke volume in horn sharks and blue sharks. Fish Physiol. Biochem. 4: 5–14.CrossRefGoogle Scholar
  3. Casley-Smith, J.R. and Mart, P.E. 1969. The relative antiquity of fenestrated blood capillaries and lymphatics and their significance for the uptake of large molecules: an electron microscopical investigation. Experientia 26: 508–510.CrossRefGoogle Scholar
  4. Goodrich, E.S. 1930. Studies on the Structure and Development of Vertebrates. MacMillan and Co., London.Google Scholar
  5. Hanson, D. 1967. Cardiovascular Dynamics and Aspects of Gas Exchange in Chondrichthyes. Univ. of Washington, Ph.D. thesis.Google Scholar
  6. Johansen, K. 1965. Dynamics of venous return in elasmobranch fishes. Hval. Skr. 48: 94–100.Google Scholar
  7. Johansen, K. 1971. Comparative physiology: gas exchange and circulation in fishes. Ann. Rev. Physiol. 33: 569–612.CrossRefGoogle Scholar
  8. Kampmeier, O.F. 1969. Evolution and Comparative Morphology of the Lymphatic System. Charles C. Thomas, Springfield.Google Scholar
  9. Lai, N.C., Graham, J.B., Lowell, W.R. and Shabetai, R. 1989. Elevated pericardial pressure and cardiac output in the leopard sharkTriakis semifasciata during exercise: the role of the pericardioperitoneal canal. J. Exp. Biol. 147: 263–277.Google Scholar
  10. Miller, A.J. 1982. Lymphatics of the Heart. Raven Press, New York.Google Scholar
  11. Moens, N.W.I. 1911. Peritonealkanale der schildkrotes u. krokodile. Morph. Jahrb. 44.Google Scholar
  12. Moss, S.A. 1984. Sharks — an Introduction For the Amateur Naturalist. Prentice-Hall, Englewood Cliffs.Google Scholar
  13. Moy-Thomas, J.A. and Miles, R.S. 1971. Paleozoic Fishes. W.B. Saunders Co., Philadelphia.Google Scholar
  14. Randall, D.J. 1968. The functional morphology of the heart in fishes. Am. Zool. 39: 185–192.Google Scholar
  15. Rhode, E.A. 1982. Physiology of the normal pericardium.In Pericardial Disease. pp. 31–47. Edited by P.S. Reddy, D.F. Leon and J.A. Shaver. Raven Press, New York.Google Scholar
  16. Romer, A.S. 1964. The Vertebrate Body. W.B. Saunders Co., Philadelphia.Google Scholar
  17. Satchell, G.H. 1970. A functional appraisal of the fish heart. Fed. Proc. 29: 1120–1123.PubMedGoogle Scholar
  18. Satchell, G.H. 1971. Circulation in Fishes. Cambridge University Press, London.Google Scholar
  19. Satchell, G.H. 1991. Physiology and Form of Fish Circulation. Cambridge University Press, London.Google Scholar
  20. Satchell, G.H. and Maddalena, D.J. 1972. The cough or expulsion reflex in the Port Jackson shark,Heterodontus portusjacksoni. Comp. Biochem. Physiol. 41A: 49–62.CrossRefGoogle Scholar
  21. Schoenlein, K. and Willem, V. 1894. Observations sur la circulation du sang chez quelques poissons. Bull. Sci. Fr. Belg. 26: 442–468.Google Scholar
  22. Shabetai, R., Abel, D.C., Graham, J.B., Bhargava, V., Keyes, R. and Witztum, K. 1985. Function of the pericardium and pericardioperitoneal canal in elasmobranch fishes. Am. J. Physiol. 248: H198–H207.PubMedGoogle Scholar
  23. Sudak, F.N. 1963. Events in the cardiac cycles ofMustelis canis. Biol. Bull. 125: 393.Google Scholar
  24. Sudak, F.N. 1965a. Intrapericardial and intracardiac pressures and the events of the cardiac cycle inMustelis canis (Mitchill). Comp. Biochem. Physiol. 14: 689–705.PubMedCrossRefGoogle Scholar
  25. Sudak, F.N. 1965b. Some factors contributing to the development of subatmospheric pressure in the heart chambers and pericardial cavity ofMustelis canis (Mitchill). Comp. Biochem. Physiol. 15: 199–215.PubMedCrossRefGoogle Scholar
  26. Wainwright, S.A., Vosburgh, F. and Hebrank, J.E. 1978. Shark skin: function in locomotion. Science 202: 747–749.PubMedGoogle Scholar

Copyright information

© Kugler Publications 1994

Authors and Affiliations

  • Daniel C. Abel
    • 1
    • 2
  • William R. Lowelll
    • 1
  • Melody A. Lipke
    • 2
  1. 1.Physiological Research LaboratoryLa JollaU.S.A.
  2. 2.Department of Biological SciencesMary Washington CollegeFredericksburgU.S.A.

Personalised recommendations