Journal of Applied Phycology

, Volume 3, Issue 2, pp 115–120 | Cite as

Quantitative determination of glutamate in a Rhodophyceae (Chondrus crispus) and four Phaeophyceae (Fucus vesiculosus, Fucus serratus, Cystoseira elegans, Cystoseira barbata)

  • Edith Bergeron
  • Pascale Jolivet
Article

Abstract

A study was made to find a better method of analyzing the glutamate pool in seaweeds than the use of HPLC, which provides unsatisfactory results with material rich in alginates and salts. A method recommended elsewhere (Inglis A, Bartone N, Finlayson J, 1988, J. Biochem. Biophys. Methods 15: 249–254) for physiological fluids has been assayed and improved for algal samples. It consisted of the addition of lithium acetate before the phenylisothiocyanate derivatization, omission of one drying step and extraction of the derivative with heptane before chromatographic analysis. Neither salt nor alginates interfered with analysis.

Key words

determination glutamate HPLC salt interference seaweed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beutler H-O, Michal G (1974) In Bergmeyer HU (ed.), Methods of Enzymatic Analysis. Verlag Chemie, Weinheim, Academic Press, Inc. New York and London, 4: 1708–1713.Google Scholar
  2. Bidlingmeyer BA, Cohen SA, Tarvin TL, Frost B (1987) A new, rapid, high-sensitivity analysis of amino acids in food type samples. J. Assoc. Off. Anal. Chem. 70: 241–247.PubMedGoogle Scholar
  3. Chang J-Y, Knecht R, Braun DG (1982) A complete separation of dimethylaminoazobenzenesulphonyl-amino acids. Biochem. J. 203: 803–806.PubMedGoogle Scholar
  4. Coudret A, Ferron F, Jolivet P, Tremblin G (1989) Fixation du carbone à l'obscurité chez Fucus serratus, Fucus vesiculosus (Pheophycées, Fucales) et Chondrus crispus (Rhodophycées, Gigartinales). Cryptogamie, Algol. 10: 247–256.Google Scholar
  5. Einarsson S, Josefsson B, Lagerkvist S (1983) Determination of amino acids with 9-fluorenylmethyl chloroformate and reversed-phase high-performance liquid chromatography. J. Chromatogr. 282: 609–618.CrossRefGoogle Scholar
  6. Gardner WS, Miller WH (1980) Reverse-phase liquid chromatographic analysis of amino acids after reaction with o-phthalaldehyde. Anal. Biochem. 101: 61–65.PubMedCrossRefGoogle Scholar
  7. Heinrikson RL, Meredith SC (1984) Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal. Biochem. 136: 65–74.PubMedCrossRefGoogle Scholar
  8. Inglis AS, Bartone NA, Finlayson JR (1988) Amino acid analysis using phenylisothiocyanate prederivatization: elimination of the drying steps. J. Biochem. Biophys. Methods 15: 249–254.PubMedCrossRefGoogle Scholar
  9. Lavi LE, Holcenberg JS (1986) Sensitive analysis of asparagine and glutamine in physiological fluids and cells by precolumn derivatization with phenylisothiocyanate and reversed-phase high-performance liquid chromatography. J. Chromatogr. 377: 155–163.PubMedGoogle Scholar
  10. Vendrell J, Aviles FX (1986) Complete amino acid analysis of proteins by dabsyl derivatization and reversed-phase liquid chromatography. J. Chromatogr. 358: 401–413.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Edith Bergeron
    • 1
  • Pascale Jolivet
    • 1
  1. 1.Institut National de la Recherche AgronomiqueLaboratoire de Chimie biologique, INA-PG Centre de GrignonThiverval-GrignonFrance

Personalised recommendations